
Sarrif – The Elegant Arabic Morphology Parser

Suhel Jaber and Rodolfo Delmonte

University Ca' Foscari, Dept. Language Sciences, Laboratory Computational Linguistics,

Ca' Bembo, Dorsoduro 1705, 30123 Venezia

Italy

{jaber,delmont}@unive.it

Abstract
In this paper we present Sarrif, our Arabic Morphology Parser, featuring a novel approach to the description of Arabic morphology
with 2-tape finite state transducers, based on a particular and systematic use of the operation of composition in a way that allows for
incremental substitutions of concatenated lexical morpheme specifications with their surface realization for non-concatenative
processes (the case of Arabic templatic interdigitation and non-templatic circumfixation).
We argue that:

1. the method of incremental substitutions through compositions allows for an elegant description of all main morphological
processes present in natural languages including non-concatenative ones in strict finite-state terms, without the need to resort
to extensions of any sort;

2. our approach allows for the most logical encoding of every kind of dependency, including traditional long-distance ones
(mutual exclusiveness), circumfixations and idiosyncratic root and pattern combinations;

3. a smart usage of composition such as ours allows for the creation of a same system that can be easily accomodated to fulfil
the duties of both a stemmer (or lexicon development tool) and a full-fledged lexical transducer.

Introduction

In this paper we present Sarrif, our Arabic Morphology
Parser, featuring a novel approach to the description of
Arabic morphology with 2-tape finite state transducers,
based on a particular and systematic use of the operation
of composition in a way that allows for incremental
substitutions of concatenated lexical morpheme
specifications with their surface realization for non-
concatenative processes (the case of Arabic templatic
interdigitation and non-templatic circumfixation).

We argue that:

1. the method of incremental substitutions through
compositions allows for an elegant description of
all main morphological processes present in natural
languages including non-concatenative ones in
strict finite-state terms, without the need to resort
to extensions of any sort;

2. our approach allows for the most logical encoding
of every kind of dependency, including traditional
long-distance ones (mutual exclusiveness),
circumfixations and idiosyncratic root and pattern
combinations;

3. a smart usage of composition such as ours allows
for the creation of a same system that can be easily
accomodated to fulfil the duties of both a stemmer
(or lexicon development tool) and a full-fledged
lexical transducer.

Preliminaries

In this section we specify only the technical parameters
needed by the reader who's already acquainted with the

generalities of Arabic language script and grammar and
finite state calculus to find his way through our
implementation details.
For the unacquainted reader willing to tackle these topics
from the beginning we suggest Bohas & Guillaume
(1984) as the most exhaustive and detailed account of
Arabic word formation rules and transformation processes
to date and Beesley & Karttunen (2003) as the best hands-
on introductory tutorial to finite state machine techniques
applied to the field of morphology.

Morphological Framework

In the examples in this paper we treat Arabic morphology
according to the analysis outlined in Harris (1941), that
considers Arabic words as the combination of pattern
morphemes, root bundle morphemes and affixes. For
instance, a word such as �����َ��ِا in this framework is
decomposed into

a. root bundle morpheme ع م ج ;
b. pattern morpheme اِْـَ�َــ (including placeholders);
c. suffix َ.

In any case, the novel approach to word formation that we
present in this paper can be applied to any particular
morphological theory.

Buckwalter Transliteration

In regular expressions we use a transliteration system
instead of the original Arabic script. We've decided to
employ that of Buckwalter (2002) because of its
widespread usage in existing implementations and its one-
to-one correspondence to the Arabic script.

252

We give a small fragment of it in Table 1, including only
the characters significantly differing from those used in
other systems.

Arabic
character

ْ ع ظ ط ض ش ح ا ئ

Buckwalter
transliteration

} A H $ D T Z E o

Table 1: A partial transliteration of Arabic characters

using the Buckwalter system

Xerox Finite State Calculus Syntax

The syntax of regular expressions presented in this paper
is that of xfst, the Xerox Finite State Tool. We give a
summary of the relevant operator and symbols in Table 2.

define
variable
regular-
expression

;

defines a variable containing a regular
expression

read regex
regular-

expression
;

compiles a regular expression and stores
it on the stack

"
character surrounding sequences that
need to be escaped as a single unit

? wildcard

0 ε-transition

*
0 or more times iteration operator
commonly known as "Kleene star"

| union or disjunction operator

.o. composition operator

Table 2: A summary of xfst symbols relevant to this

paper's examples

Note that in our approach we use a finite state calculus
that is classical (as opposed to the Two-Level one of
Koskenniemi (1983)) and strict (as opposed to the
extended one including algorithms such as those of
Beesley & Karttunen (2000), which allow also for the
resolution of problems normally exceeding finite-state
power), without using the classical intersection operation
at all.
For a description of the drawbacks of resorting to the
aforementioned techniques for Arabic morphology
parsing, see Jaber & Delmonte (2008).

Arabic Morphology Parsing in Sarrif

The Compositional Approach to Morphology

The main insight leading our implementation of Arabic
morphology is that every morphological process can be
modelled in terms of the composition of regular
languages.
We call our approach the "Incremental Substitutions"
Compositional Approach.

In the rest of this section we explain this concept by
showing all the stages of the process which maps the word

7َ9ُ�ُ:ْ among others to its morphological analysis.

Templatic Interdigitation (Idiosyncratic Root and
Pattern Combinations)
We now show how to obtain a mapping from the
substring 9�ُ;ْ among others to its analysis as "
Form_I_Impf_Act_u".

define C [' | b | t | v | j | H | x | d
|"*" | r | z | s | "$" | S | D | T | Z | E
| g | f | q | k | l | m | n | h | w | y];

read regex [[q t l | k t b | T r q]
" Form_I_Impf_Act_u"]
.o. [C 0:o C 0:u C " Form_I_Impf_Act_u":0];

From an ‘analytical’ (as opposed to ‘generative’) point of
view we can interpret this last regular relation as a two-
phase mapping:

1. [C 0:o C 0:u C " Form_I_Impf_Act_u":0]
makes it so that the vowels in the Verb Form I
Imperfect Active pattern ْـُــ get ‘filtered’ in the
passage from surface to lexical representation,
‘erased’ and ‘substituted’ by the agreeing tag
which is in fact concatenated to the end of the
remaining lexical material made up of those [C]
roots which were allowed to ‘pass through’;

2. the resulting lexical string is ‘passed’ as an

argument to a second regular expression [[q t l
| k t b | T r q] " Form_I_Impf_Act_u"]
by means of composition, which will operate on
the remaining material if and only if the tags (in
this case only 1) concatenated at the end of the
regular expression correspond to those generated in
or passed through the previous phase of analysis;
in this case all it would do on the remaining
material would be constraining its quality to that of
the actual root morphemes which are allowed to
combine with the pattern represented by the
concatenated tag.

Notice that in this case we don’t even need to previously
define the [C] language, even if we did it in the previous
example. Indeed the following regular expression denotes
exactly the same relation as the previous one.

read regex [[q t l | k t b | T r q]
" Form_I_Impf_Act_u"]
.o. [? 0:o ? 0:u ? " Form_I_Impf_Act_u":0];

With the following expression we show how it is possible

to organize a lot of idiosyncratic root and pattern

combinations together in one compact structure:

read regex [
[[k t b | q t l] " Form_I_Perf_Act_a"] |
[[D r b | H s b] " Form_I_Perf_Act_i"] |
[["$" r f | H s n] " Form_I_Perf_Act_u"]
] .o. [
[? 0:a ? 0:a ? " Form_I_Perf_Act_a":0] |
[? 0:a ? 0:i ? " Form_I_Perf_Act_i":0] |

253

[? 0:a ? 0:u ? " Form_I_Perf_Act_u":0]
];

Non-templatic Circumfixation
Let’s now have a look at how circumfixation can be
efficiently handled through the operation of composition:

read regex
[[q t l] " Form_I_Impf_Act_u"
[" 2_Pers_Sing_Fem_Ind_a" |
" 1_Pers_Plur_Ind_a"]] .o.
[? 0:o ? 0:u ? " Form_I_Impf_Act_u":0
[" 2_Pers_Sing_Fem_Ind_a" |
" 1_Pers_Plur_Ind_a"]] .o.
[0:t 0:a ?* 0:i 0:y 0:n 0:a
" 2_Pers_Sing_Fem_Ind_a":0 |
0:n 0:a ?* 0:u " 1_Pers_Plur_Ind_a":0];

In [0:t 0:a ?* 0:i 0:y 0:n 0:a
" 2_Pers_Sing_Fem_Ind_a":0 |
0:n 0:a ?* 0:u " 1_Pers_Plur_Ind_a":0] an
arbitrary string (?*) surrounded by a given circumfix (i.e.
preceded and followed by a given prefix and suffix
respectively) is mapped to the same arbitrary string and a
tag representing the analysis of the circumfix consumed
by the ε-transitions.

Note that other implementations usually deal with certain
long-distance dependencies through the use of
composition, but in a very different way:

1. all the prefixes, stems and suffixes are
concatenated together to form every potential
combination (even prohibited ones), and prefixes
and suffixes are assigned each a distinctive tag;

2. through the use of composition, patterns featuring
mutually exclusive tags are explicitly removed
from the network.

Our method, on the other hand, just assigns one tag to
each circumfix (for other purposes, moreover) and
anyway the correct circumfixation is created in one single
process instead of total prefixation plus total suffixation
and subsequent pruning.

Summing It All Up
We’re now ready to give an interpretation of our
"Incremental Substitutions" Compositional Approach
from a ‘generative’point of view as that of an n-phase
mapping:

1. in the first regular expression we enlist in a
concatenative way all the morphemes (or rather,
their lexical representations) which make up a
word, in the order in which we should process their
‘merging’ with the string we obtain at each phase;

2. in the subsequent regular expressions we process
their ‘merging’ with any intermediate string
previously obtained, according to the order of the
remaining tags at each point, ‘erasing’ one tag at a
time after its surface counterpart has been created
and merged to the rest.

In this way we were able to give a linear rendering of
what globally assumes the entity of a hierarchical
representation (cfn. ‘morphosyntax’) or incremental
creation of bigger building blocks from already elaborated
ones, i.e.:

ْ;9�ُ= ْـُــ + ق ت ل

7َْ:9ُ�ُ= 7َــُـ + ْ;9�ُ

Using Sarrif as a Stemmer

Sarrif is a flexible implementation. Besides being an
elegant parser, it can also work as a stemmer by relaxing
the constraints on the allowed root morphemes for each
pattern, as in the following regular expression:

read regex [
[? ? ? " Form_I_Perf_Act_a"] |
[? ? ? " Form_I_Perf_Act_i"] |
[? ? ? " Form_I_Perf_Act_u"]
] .o. [
[? 0:a ? 0:a ? " Form_I_Perf_Act_a":0] |
[? 0:a ? 0:i ? " Form_I_Perf_Act_i":0] |
[? 0:a ? 0:u ? " Form_I_Perf_Act_u":0]
];

By running this kind of machine on an Arabic text input
we get an output of all the encountered root bundles
classified by the patterns they were found in. This has
helped us build our lexicon out of different sources.

Implementation Evaluation

For purposes of evaluation we have written a script
composing more than 4700 root morphemes with the
verbal patterns they can actually combine with extracted
from several databases.
This grammar compiled in real time on an Intel Pentium
M 730 1.60 GHz based Microsoft Windows XP system
using the Xerox Finite-State Tool version 2.6.2.

Conclusions

In this paper we have presented Sarrif, our Arabic
morphology parser featuring an elegant and efficient
approach to the encoding of lexical transducers that we
have called “Incremental Substitutions” Compositional
Approach.
We’ve given hands-on details on our implementation,
exemplifying how most morphological processes and
descriptions are actually dealt with by going through some
simplified snippets of code.
Moreover, we have designed more than one way our
model could be put to practical usage (stemming, field
research and lexicon developing, morphological analysis
and generation).
Ultimately, we have shown that our model allows for a
fair description of Arabic morphology in a strictly finite-
state framework without the need to resort to
enhancements or extensions of any sort.

254

References

Beesley, K.R. & Karttunen, L. (2000). Finite-State Non-
concatenative Morphotactics. In Proceedings of the
Workshop on Finite-State Phonology. 38th Annual
Meeting of the Association for Computational
Linguistics. Morristown, NJ: Association for
Computational Linguistics.

Beesley, K.R. & Karttunen, L. (2003). Finite State
Morphology. Stanford: CSLI.

Bohas, G. & Guillaume, J.P. (1984). Etude des Théories
des Grammairiens Arabes. Damas: Institut Français de
Damas.

Buckwalter, T. (2002). Buckwalter Arabic Morphological
Analyzer Version 1.0. LDC Catalog Number
LDC2002L49. Linguistic Data Consortium.

Harris, Z. (1941). Linguistic Structure of Hebrew. Journal
of the American Oriental Society, 62, 143--167.

Jaber, S. & Delmonte, R. (2008). Arabic Morphology
Parsing Revisited. In Proceedings of the 9th
International Conference on Intelligent Text Processing
and Computational Linguistics. Berlin, Heidelberg:
Springer.

Koskenniemi, K. (1983). Two-Level Morphology: A
General Computational Model for Word-Form
Recognition and Production. Publication 11. University
of Helsinki, Department of General Linguistics,
Helsinki.

255

