
Implementation of infixes and circumfixes in the spellcheckers
Taha Zerrouki *، , Amar Balla

*National institute of Computing INI Algiers
High Council of Arabic language in Algeria

t_zerrouki@ini.dz, taha_zerrouki@gawab.com
a_balla@ini.dz

Abstract

Most of spell checkers and morphological analyzers of natural languages are based on the affixes (suffixes and prefixes) extraction.
But there are some other languages which use another kind of word changes like infixes and circumfixes. An infix is an affix that is
inserted within a root. or stem. A circumfix is an affix, a morpheme that is placed around another morpheme. Circumfixes contrast
with prefixes, attached to the beginning of the words; suffixes, that are attached at the end; and infixes, inserted in the middle.

This features are not implemented now in spellcheckers, and can give more puissance and facility to model more languages rules and
affixations. This paper concerns Arabic language which uses internal word changes and has more affixes dependency, and diacritics
(HARAKAT) which are ignored usually. These characteristics exist in other languages. In this paper, we illustrate a try to add infixes,
circumfixes support, ignoring diacritics to open source spell checkers Aspell and Hunspell. And what's the advantages of this new
features in the languages morphology.

Introduction
Most of actual spell checkers are based on the word
segmentation into prefixes, stems and suffixes, then check
if the found affixes are permitted for the given stem
according to a word list and a affixes rules.
In some cases, words have internal changes which can't be
presented with affixes. So, developers use other complex
solution to do it. There are some kind of internal changes:
ignoring diacritics, infixes and circumfixes. Those kinds
exist in several natural languages, but not supported by
most of spell checkers.
In this paper, we are explaining how these changes work,
and trying to implement this new features by modifieg in
Hunspell and Aspell open source spellcheckers.

Definitions
We define in this section infixes, ignoring diacritics,
circumfixes, Hunspell spell checker, Aspell spell checker.

Infixes definition

Infix is an affix inserted inside another morpheme
(Hartmann, 1972) . This is common in Austronesian and
Austroasiatic languages. For example, the Tagalog
language has borrowed the English word graduate as a
verb. In this language, a grammatical form similar to the
active voice is formed by adding the infix <um> as close
to the left edge of the verb(provided that the /m/ does not
act as the end of a syllable) , so a speaker saying "I
graduated" uses the derived form grumaduate. (It is
conventional to set off infixes with <angle brackets>,
rather than the hyphens used to set off prefixes and
suffixes.)

The Semitic languages have a form of ablaut (changing
the vowels within words, as in English sing, sang, sung,
song) which is sometimes called infixation, but there is
often no identifiable infix common across the vocabulary.
However, Arabic uses a common infix, <ت> <t> for
Form VIII verbs, usually a reflexive of Form I. It is placed
after the first consonant of the root; an epenthetic i- prefix
is added since words cannot begin with a consonant
cluster. An example is ا���� ijtahada "he worked hard",
from ��� jahada "he stroves". (The words "ijtihad" and
"jihad" are nouns derived from these two verbs.)

 In Seri some verbs form the plural stem with infixation of
-tóo- after the first vowel of the root; compare the singular
stem ic 'plant (verb)' with the plural stem itóoc. Examples:
itíc 'did s/he plant it?' and iti tóoc 'did they sow it?'.

English has very few infixes, and it does have marginal. A
few are heard in colloquial speech, and a couple more are
found in technical terminology.

• The infix <iz> or <izn> is characteristic of hip-
hop slang, for example hizouse for house and
shiznit for shit. Infixes occur in some language
games. The <ma> infix, whose distribution was
documented by linguist Alan C. L. Yu, gives a
word an ironic pseudo-sophistication, as in
sophistimacated, saxomaphone, and
edumacation.

• Chemical nomenclature includes the infixes
<pe>, signifying complete hydrogenation (from
piperidine), and <et> (from ethyl), signifying the
ethyl radical C2H5. Thus from picoline is derived
pipecoline, and from lutidine is derived

61

lupetidine; from phenidine and xanthoxylin are
derived phenetidine and xanthoxyletin.

Tmesis is sometimes considered a type of infixation. It is
found in English profanity, such as infuckingcredible and
absobloodylutely. See the article expletive infixation.

Note that sequence of prefixes or suffixes do not result in
infixes: An infix must be internal to a single morpheme.
Thus the word originally, formed by adding the suffix -ly
to original, does not turn the suffix -al into an infix. There
is simply a sequence of two suffixes, origin-al-ly. In order
for -al- to be considered an infix, it would have to be
inserted in the non-existent word *originly . The "infixes"
in the Bantu languages are generally sequence of prefixes
of these types.

Circumfix definition

A circumfix is an affix, a morpheme that is placed around
another morpheme. Circumfixes contrast with prefixes,
attached to the beginning of the words; suffixes, that are
attached at the end; and infixes, inserted in the middle.
See also epenthesis. Circumfixes are extremely common
in Indonesian (Alan 2004).

The circumfix is probably most widely known from the
German past participle (ge- -t for regular verbs). The verb
spielen, for example, has the participle gespielt. Dutch has
a similar system (spelen – gespeeld in this case)(Alan

2004).

In Hebrew, magdelet "magnifier", for example, the root is
gdl "big" (in the H-stem hagdel "to enlarge") and the
circumfix is m- -et.

In Japanese, the honorific circumfix o- -ni naru and o- -
suru are used; for example yomu → o-yomi ni naru
(respectful), o-yomi suru (humble) (Boeckx, 2004).

In Berber languages the feminine is marked with the
circumfix t…t. The word afus (hand) becomes tafust.

The negation in Guaraní is also done with circumfixes nd-
-i and nd- -mo'ãi for future negations.

In Arabic, circumfix is common, especially in the future
tense conjugation, like y-ktb-on ي - . ون- آ�

Aspell definition
GNU Aspell is a spell checker designed to eventually
replace Ispell. It can either be used as a library or as an
independent spell checker.. Aspell support Unicode and
multiple dictionaries at once.
It works on multiple plateformes and can be used by a lot
of application (Aspell, 2007).

.
its main features are

• Is an actual library that other programs can link
to instead of having to use it through a pipe.

• Can learn from user's misspellings.
• Support Unicode and multi-languages and

multiple dictionaries .
• Support compound words
• Dictionary Compression.
• Simple affix rules syntax

Hunspell definition
Hanspal Spellchecker is the next generation of Myspell,
has been improved in order to support additional features
for European languages, especially for Hungarian
language, as well as other languages such as German and
Turkish (Hunspell, 2007; Németh et al. 2004; Halacsy
et al. 2004).
I had participated in program development to add new
Arabic features which ignore Arabic diacritics (harakat),
this features is added in 1.1.5 version (Hunspell, 2007).
Main features of Hunspell spell checker and
morphological analyzer:

1. Unicode support (affix rules work only with the first

65535 Unicode characters(
2. Morphological analysis (in custom item and

arrangement style(
3. Max. 65535 affix classes and twofold affix stripping

(for agglutinative languages, like Azeri, Basque,
Estonian, Finnish, Hungarian, Turkish, etc)

4. Support complex compoundings (for example,
Hungarian and German)

5. Support language specific features (for example,
special casing of Azeri and Turkish dotted i, or
German sharp s)

6. Handle conditional affixes, circumfixes,
fogemorphemes, forbidden words, pseudoroots and
homonyms.

Spellchecking

In this paragraph we talk about how Spellcheckers work,
especially the auditors aspell and Hunspell. We have
chosen open source spell checkers, because that they
allow code access, modification, and give description to
build a new dictionary.
Open source spellcheckers are derived from Ispell which
gave Myspell, Aspell and Hunspell. This checkers are
universal and multi-lingual.
A Language pack usually consists of two files, the
dictionary file and affix rules file (Table 1).
In Hunspell, there are tow files, word list ar.dic and affix
file ar.aff. In Aspell there are compressed word list ar.wl,
and data affix rules ar_affix.dat and others files for
configuration.
For two cases, the same syntax is used because it's
inherited from Ispell, but there are some differences.
Affix file: contains a list of possible affixes and the rules
of application,
word list file: contains a list of words and possible rules
for each word.

62

Words check
- When launching the program, the Language files

is loading.
- - Convert the text into words.
- for each word:
- search for the prefix according to the first letter.
- the affix can be null
- The prefix is deleted, add strip to the greeted

stem,
- search the resulted stem in the dictionary.
- If the resulted stem exists, it tests if the affix rule

is accepted for this word.

Example
incorrect word correct word word list

affix file

lylike
Likeun
liked

unlike
likely

like/ TY

SFX T Y 1
SFX T 0 ly .

PFX Y Y 1
PFX Y 0
un .

Table 1 format of affixes in spellcheckers

Suggestions :

When the spell checker find a incorrect word, it gives
suggestions, by changing one or more letters to find a
nearly correct word.

New features
After studying spell checkers characteristics and features
in order to add Arabic language support (Zerrouki, 2007;
Ayaspell, 2008), we note that needed features can’t be
expressed by existing features, but it must be add, like
ignoring vocalization (HARAKAT and TATWEEL) and

the internal changes in the word (إعلال وإبدال , geminating).
In order to explain the impact of infixes in Arabic
dictionary, we give some statistics of ayaspell project:
In first version of the dictionary, there are :

- 14391 verbs, more than 4000 are made by
inffixation.

- Nouns: 28434 derivation nouns, 13374 nominals,
8408 subject nouns, 1809 object nouns, 4843
others classification of nouns.

- 960 prepositions
- 12177 special nouns.

With the use of infixes, we can – in theory- derivate more
then 32 words from 10000 verbs, these will reduce the
dictionary to 23000 words (10000 verbs, 1000
preposition, 12000 nouns) instead of 55000 words
existing actually.
We have modified the code of Aspell and Hunspell in
order to add new features to resolve the following
problems:

- ignoring Arabic diacritics.

- Internal changes with the use of infixes.
- Dependency of suffixes and prefixes with the use

of circumfixes.

Ignoring Arabic diacritics
Most of Arabic texts are unvocalized, then spell checkers
ignore Arabic diacritics and tatweel. For example the
word َ آََ�!َ َ َ is incorrect if the spell checker doesn’t ignore
diacritics.

Solution
We have added a new feature on the spell checker config
file, and modified the code. When the spellchecker read a
word, it ignores specified characters from the word.
For Hunspell case (Table 2), we have added the IGNORE
flag into affix file.
This feature can be used in other languages

example
txt.good ar.dic ar.aff
 كـــــتب
كَتَب َ َ
 ُ كُتــــــب
 ــــكتبـ

 كتب

SET UTF8

IGNORE ًِــ ً َـ َ

Table 2 Ignoring Arabic diacritics in Hunspell

For Aspell (Table 3), we have added a new feature
“DIACRITICS” to ignore followed letters in parameter.
We have named this feature “DIACRITICS” instead of
IGNORE, because there is another feature with the same
name to ignore accented letters.
The syntax of this feature in the .dat file is illustrate in the
example.

Example:
txt.good ar.wl ar.dat
 كـــــتب
كَتَب َ َ
 ُ كُتــــــب
 ــــكتبـ

 كتب

SET UTF8

diacritics ًِــ ً َـ َ

Table 3 Ignoring Arabic diacritics in Aspell

Infixes
The most difficult in the spellchecking, is the
representation of internal word changes with affixes, for
example the verb م#$

قمت> =قامت، > =قام
Qam=>qamt (add suffix ‘t’)
Qam =>qmt (add suffix ‘t’ and strip the ‘a’).
Qam=>yqom (add prefix ‘y’ and swap ‘a’ into ‘o’)
To represent this case we must add different stems to
dictionary which increase its size and make affix rules
more complex (Table 4 ,Table 5).

63

example:
wrong good Ar.dic Ar.af
 يقام

 قامت
 قمت
 يقوم

 T / قام

 T / قم
 Y / قوم

 # t suffx
SFX T Y 1

SFX T 0 ت
 # y prefix
PFX Y Y 1

PFX Y 0 ي

Table 4: internal changes in Arabic word
wrong good Ar.dic Ar.af
yqam

qamt
qmt
yqom

qam/ T

qm/ T

qom/ Y

 # t suffx
SFX T Y 1
SFX T 0 t
 # y prefix
PFX Y Y 1
PFX Y 0 t

Table 5: internal changes in Arabic word transliterated

Solution
We have added a new feature on the affix rules, we
express any letters in a word by a period ‘.’ (Table 6 ,
Table 7)
For example, the prefix ‘y.o’ means that the ‘y’ is a
prefix, and the ‘o’ is added after the first letter and we
obain,
Qm+y.o=> yqom
The suffix ‘y.’ means tha ‘y’ is added before the last letter
of word. Then we obtain
Istql + y. => istqyl
We can also express striping internal letters in the same
way. The strip condition ‘a.’ in a suffix rule means that
the ‘a’ letter before the last letter, will be striped.
Example : istqal (strip ‘a.’) => istql.

Example:
The previous examples are presented like this,

wrong good Ar.dic Ar.aff

 يقام

 قامت
 قمت
 يقوم

 مدخل واحد فقط #

 TY / قام

SET UTF8

 لزيادة تاء الماضي #
SFX T Y 21

SFX T 0 ت
 . ت . ا T سابقة

 لزيادة ياء المضارع #
PFX Y Y 1

 و . ي ا. Y سابقة

Table 6: use of infixes feature in Arabic

wrong good Ar.dic Ar.aff

yqam

qamt
qmt
yqom

 مدخل واحد فقط #

qam/ TY

SET UTF8

 # suffix t
SFX T Y 21
SFX T 0 t
SFX T a. t
 # prefix y
PFX Y Y 1
PFX Y .a y.o

Table 7 : use of infixes feature in Arabic

It’s possible to use this feature for other languages, we can
generate ‘swum’ and ‘swam’ from ‘swim’ in English.
We tested this feature on Aspell and Hunspell, and we had
good results.

Circumfixes
In Arabic verb conjugation, it’s common to have
dependency affixes, like y-ktb-on. Hunspell and Aspell (in
0.61 version) offer a possibility to combine affixes, and
express affixes dependency with circomfix feature. Both
of spellcheckers use the same rule (Table 8).
But we think that this feature is not suitable for languages
with a lot of affixes dependency because rules become
more complex, and hard to maintain.

Example
txt.wrong txt.good ar.dic ar.aff
 يفعل
 فعلون
 فعلن
 تفعل
 يفعلن

 يفعلون
 تفعلون
 تفعلن

 N / فعل

CIRCUMFFIX X
PFX Y Y 2

PFX Y 0 ي /X

PFX Y 0 ت /X

PFX W Y 1

PFX W 0 ت /X

SFX N Y 2

SFX N 0 ون /XY

SFX N 0 XW ن /

Table 8 circumfix in Arabic word

In this case:
- we have the rule

- SFX N 0 ون /XY

Which means that the flag X links that the suffix ون
‘on’ with the prefix Y.
- It gives yfalon, tfalon
- The rule

- SFX N 0 XW ن /
- Combines the suffix ‘on’ with the prefix W, it

gives tfaln but not yfaln.
We note that this will complicate the rules when we have
more classifications.

64

solution
We suggest to integrate dependent affixes in the same rule
(Table 9, Table 10), like this ‘y-on’,’t-on’,’t-n’, called
circumfixes.
The ‘-‘ substitutes the stem.
Fal +y-on =>yfalon
Fal +t-on =>tfalon
Fal +t-n =>tfaln
We activate this feature on the affix file with the
SPLITAFFIX flag.

txt.wrong txt.good ar.dic ar.aff
 فعلون
 فعلن
 يفعلن

 ونفعل- ي
 ونفعل- ت

 نفعل- ت

 يفعلون
 تفعلون
 تفعلن
 يفعل
 تفعل

 N SPLITAFFIX / فعل
PFX Y Y 5

PFX Y 0 ون- ي
PFX Y 0 ون- ت

PFX Y 0 ن- ت

PFX Y 0 ي

PFX Y 0 ت

Table 9: use of circumfix with the new feature

txt.wrong txt.good ar.dic ar.aff
Falon
Faln
Yfaln
y-onfal
t-onfal
t-nfal

Yfalon
Tfalon
Tfaln
Tfal
Yfal

fal/ N SPLITAFFIX
PFX Y Y 5
PFX Y 0 y-on
PFX Y 0 t-on
PFX Y 0 t-n
PFX Y 0 y
PFX Y 0 t

Table 10 : use of circumfix with the new feature
(transliterated)

Notes
- affixes without ‘-‘ are treated normaly.
- It’s possible to combine circumfixes and infixes.
- Circumfixes expressed with prefix rules are

processed as prefixes with additional suffixes.
- Circumfixes expressed with suffix rules are

processed as suffixes with additional prefixes.
- It’s possible to combine circumfixes.
- The difference between prefixed circumfixes an

suffixed circumfixes is the side of striping.

Example (Table 9)
- The prefix

PFX Y i y-on
Strips ‘i’ from the word begin :
Istfal => ystfalon

The suffix
SFX Y a y-on
Strips ‘a’ from the word end :
mcha => ymchon

- If the verb needs to have strip from tow side, we
can express this by combining circumfixes

- Istqsa => ystqson
PFX Y i y-on/S : strip ‘i' from word begin

SFX S a 0 : strip ‘a’ from word
end.

We have tested this feature with Huspell, we
obtained good results. In the aspell case tests are
in progress.

Conclusion

In this article we had illustrated the need for some new
features to process infixes, circumfixes and Arabic
diacritics ignore. We have attempted programming these
new features in the open source spell checkers aspell and
Hunspell.
It should be noted that the philosophy of open source
gives a strong push for continuous development of
programms at low cost material and human resources, and
contribute to the progress and advancement, through the
Arabic support in this area.
These advantages have been applied in preparing the
Dictionary of the Arabic language and the properties Al-
I'lal, the letters replacement and diacritics ignore.
We intend in the future to think about two important
solution for the Arabic language to consider diacritics
during the spell checking, and the support of geminating
in affixation.

References
Ayaspell (2008), Arabic dictionary project

http://ayaspell.sourceforge.net
Hunspell (2007) http://hunspell.sourceforge.net
Aspell (2007) spellchecker http://aspell.net/.
Boeckx, Cedric & Fumikazu Niinuma (2004), "Conditions

on Agreement in Japanese", Natural Language and
Linguistic Theory 22 (3):453-480,
<http://www.springerlink.com/content/xp77097378842
286/>Németh L. and al. (2004) Leveraging the open-
source ispell codebase for minority language analysis.
In Proceedings of SALTMIL. European Language
Resources Association.

Halacsy Peter, Andras Kornai, Laszlo Nemeth, Andras
Rung, Istvan Szakadat, and Vikto Tron. (2004).
Creating open language resources for Hungarian. In
Proceedings of the LREC, Lisbon, Portugal

Schaback Johannes and Fang Li. (2007). Multi-level
feature extraction for spelling correction. In IJCAI-
2007 Workshop on Analytics for Noisy Unstructured
Text Data, pages 79–86, Hyderabad, India

Hartmann, R.R.K., and F.C. Stork. (1972). Dictionary of
language and linguistics. London: Applied Science

Alan C. L. Yu (2004) Reduplication in English Homeric
Infixation, University of Chicago,
http://washo.uchicago.edu/pub/nels34.pdf

Zerrouki T. 2007, Programming sides to support arabic
language in Hunspell open source spellchecker, Days
study on Arabic language processing, Bechar
university, Algeria.

Zerrouki T. 2007, Infixes and Circumfixes for support
Arabic language spellchecking, Arabic softwares
conference, High Council of Arabic language, Algeria

65

