
A Hybrid System for Automatic Arabic Diacritization

Mohsen A. A. Rashwan
1, 2

, Mohammad Al-Badrashiny
1, 3

, Mohamed Attia
1
, Sherif M. Abdou

1, 4

1 The Engineering Company for the Development of Computer Systems; RDI, Egypt www.RDI-eg.com
2 Prof. in the dept. of Electronics & Electrical Communications, Faculty of Eng., Cairo Univ., Egypt

3 M.Sc. student in the dept. of Electronics & Electrical Communications, Faculty of Eng., Cairo Univ., Egypt
4 Assistant Prof. in the Faculty of Computers & Information, Cairo Univ., Egypt

{Mohsen_Rashwan, Mohammed.Badrashiny, m_Atteya, sAbdou}@RDI-eg.com

Abstract
This paper introduces a two-layer stochastic system to automatically diacritize raw Arabic text that is known to be quite a tough
problem. The first layer tries to decide about the most likely diacritics by choosing the sequence of full-form Arabic word
diacritizations with maximum marginal probability via long A* lattice search and m-gram probability estimation. When full-form
words happen to be out-of-vocabulary, the second layer is resorted to. This second layer factorizes each Arabic word into its
possible morphological constituents (prefix, root, pattern and suffix), then uses m-gram probability estimation and A* lattice
search to select among the possible factorizations to get the most likely diacritizations sequence. While the second layer has the
advantage of excellent coverage over the Arabic language, the first layer enjoys a better disambiguation for the same size of
training corpora especially for inferring syntactical (case-based) diacritics. The presented hybrid system enjoys the advantages of
both layers. After a background on Arabic morphology & PoS tagging, the paper details the workings of both layers and the
architecture of the hybrid system.

1. Introduction

Automatic words diacritization is one of the NLP

challenges with languages having diacritics unveiling

the phonetic transcription of their words. Arabic is an

example of such languages where different diacritics

over for the same spelling produce different words

with maybe different meanings (e.g. عِهْى “science”,

 … ” “knew عَهِىَ ,” “taught عَهَّىَ ,” “flag عَهَى

etc.). Text-to-speech (TTS), Part-of-Speech (PoS)

tagging, Word Sense Disambiguation (WSD), and

Machine Translation can be enumerated among a

longer list of applications that vitally benefit from

automatic diacritization. One major challenge with

Arabic is its rich derivative and inflective nature, so it

is very difficult to build a complete vocabulary that

cover all (or even most of) the Arabic generable

words. In fact, while Arabic is on the extreme of

richness as per its vocabulary when regarded as full-

form words, this language is also on the extreme of

compactness of atomic building entities due to its very

systematic and rich derivative and inflective nature.

Hence, the importance of sound Arabic language

factorization, esp. morphological analysis, gets more

crucial for Arabic diacritization.

Over more than 10 years we have been building

Arabic diacritization systems that factorize input

Arabic text into all the possible lexemes and case

diacritics then statistically disambiguate the most

likely sequence of these entities via deep lattice

search, whence infer the most likely diacritization and

phonetic transcription of the input text. While the

virtue of this methodology is its excellent coverage of

the language, its drawback is its relatively sluggish

attenuation of the disambiguation error margin with

increasing the annotated training corpora which is

expensive and time consuming to build and validate.

So, we have started recently to try the same statistical

language modeling and disambiguation methodologies

over full-form Arabic words instead of factorized

ones. While this proved to enhance the error margin

faster than the former approach, it apparently suffers

from the problem of poor coverage. It has then been

realized that a hybrid of the two approaches may

enjoy the best of each.

The architecture of this hybrid system is detailed over

section 3 of this paper after revising our Arabic

morphological analysis & PoS tagging models and the

architecture of the Arabic diacritization

disambiguating the factorized output after these

analyses over section 2. Section 4 explains the

statistical language modeling as well as lattice search

deployed in both architectures. In section 5 the most

recent related works are mentioned.

In section 6, the set-up and results of our experiments

are described. Whence the paper is concluded over

section 7 with suggestions for further future work.

2. Arabic Factorization via Morphological

Analysis and PoS Tagging

The diacritization of an Arabic word consists of two

components; morphology-dependent and syntax-

dependent ones. While the morphological

diacritization distinguishes different words with the

same spelling from one another; e.g. عِهْى which means

“science” and عَهَى which means “flag”, the syntactic

case of the word within a given sentence; i.e. its role

in the parsing tree of that sentence, determine the

54

http://www.rdi-eg.com/
mailto:%7BMohsen_Rashwan,%20Mohammed.Badrashiny,%20m_Atteya,%20sAbdou%7D@RDI-eg.co

syntax-dependent diacritic of the word. For example;

انرياضيات عِهْىَ درسِثُ implies the syntactic diacritic of

the target word - which is an “object” in the parsing

tree - is “Fatha”, while ُانعهوو جميعَ انرياضياتِ عِهْىُ يفيد
implies the syntactic diacritic of the target word –

which is a “subject” in the parsing tree - is “Damma”.

2.1. Arabic Morphological Analysis:

Our Arabic morphological model assumes the

canonical structure uniquely representing any given

Arabic word w to be a quadruple of lexemes (or

morphemes) so that w→q = (t: p, r, f, s) where p is

prefix code, r is root code, f is pattern (or form) code,

and s is suffix code. The type code t can signify words

belonging to one of the following 4 classes: Regular

Derivative (wrd), Irregular Derivative (wid), Fixed (wf),

or Arabized (wa).

Prefixes and suffixes; P and S, the 4 classes applied on

patterns giving Frd, Fid, Ff, and Fa, plus only 3 classes

applied on roots1; Rd, Rf, and Ra constitute together the

9 categories of lexemes in this model. The total

number of lexemes of all these categories in our

model is around 7,800. With such a limited set of

lexemes, the dynamic coverage exceeds 99.8%

measured on large Arabic text corpora excluding

transliterated words. [5]

Table 1 below shows this model applied on few

representative sample Arabic words.

Sample

word

Word

type

Prefix

&

prefix

code

Root

&

root

code

Pattern

&

pattern

code

Suffix

&

suffix

code

ًَا فَـ Fixed فَ
2

 لَّذِياَ
87

 مَا
48

 ـ
0

 Regular جَحَنَاوَنه

Derivative
 جـ
86

ن و ل
4077

 تَفَاعَلَ
176

 ـه
8

 Regular اَنْكِحَابَات

Derivative
 انـ

9

ك ت

 ب
3354

 فِعَال
684

 ـات
27

ًِيَّة Regular اَنْعِهْ

Derivative
 انـ

9
ع ل م

2754

 فِعِل
842

 ـيَّة
28

 Fixed يِنِ
 ـ
0

 نِمِـ
63

 نِـمِ
118

 ـ
0

 Regular يَوَاضِيع

Derivative
 ـ
0

و ض

ع
4339

 مَفَاعِيل
93

 ـ
0

Table 1: Arabic morphological analyses examples.

1 The roots are common among both the regular and

irregular derivative Arabic words.

2.2. Arabic PoS Tagging:

Our Arabic PoS-tagging model relies on a compact set

of Arabic PoS tags containing only 62 tags that cover

all the possible atomic context-free syntactic features

of Arabic words. While many of these Arabic PoS

tags may have corresponding ones in other languages,

few do not have such counterparts and may be specific

to the Arabic language.

This PoS tag-set has been extracted after a thorough

scanning and redundancy elimination of the morpho-

syntactic features of the 7,800 lexemes in our

morphologically factorized Arabic lexicon.

Completeness, atomicity, and insurability of these

scanned morpho-syntactic features were the criteria

adhered to during that process [2], [3].

Due to the atomicity of our Arabic PoS-tags as well as

the compound nature of Arabic lexemes in general,

the PoS labels of Arabic lexemes are represented by

PoS tags-vectors. Each lexeme in our Arabic

factorized lexicon is hence labeled by a PoS tags-

vector.

While the Arabic PoS-tagging of stems is retrieved

from the PoS label of the pattern lexeme only, not the

root’s, the PoS-tagging of the affixes is obtained from

the PoS labels of the prefix and suffix. So, the Arabic

PoS-tagging of a quadruple corresponding to a

morphologically factorized input Arabic word is given

by the concatenation of its PoS labels of the prefix, the

pattern, and suffix respectively after eliminating any

redundancy. Table 2 shows the Arabic PoS-tagging of

few sample words. For more details on this Arabic

PoS-tagging model along with its underlying PoS tag-

set refer to [3] and chapter 3 of [2].

Sample

word
Arabic PoS tags vector

ًَا [Conjunction, Noun, Relative Pronoun, Null Suffix] فَ

[عطف، اسى، اسى يوصول، لا لاحقة]

 [Present, Active, Verb ,Objective Pronoun] جَحَنَاوَنه

[يضارع، يبني نهًعهوو، فعم، ضًير نصب]

 [Definitive, Noun, Plural, Feminine] اَنْكِحَابَات

[يؤنَّث ال انحعريف، اسى، جمع،]

 [Null Prefix, Preposition, Null Suffix] يِنِ

[لا سابقة، حرف، لا لاحقة]

 [Null Prefix, Noun, No SARF, Plural, Null Suffix] يَوَاضِيع

[لا سابقة، اسى، ممنوع ين انصرف، جمع، لا لاحقة]

Table 2: Samples of PoS tag-vectors of Arabic words.

2.3. Arabic Diacritization via Statistically

Disambiguating Factorized Arabic Text:

The morphological diacritization of a given word is

directly extractable from the prefix, pattern, and suffix

lexemes of the morphological analysis of that word.

The issue here is to disambiguate the multiple

55

analyses proposed by the Arabic morphological

analyzer. In the absence of deeper linguistic

processing, statistical disambiguation is deployed to

infer the sequence of analyses with maximum

likelihood probability according to a statistical

language model built from a morphologically

annotated training corpus.

For syntactic diacritization the PoS-tag vectors of a

sequence of Arabic words along with the possible

syntactic diacritics of each word are obtained after its

morphological disambiguation. Statistical

disambiguation is deployed again to infer the

sequence of syntactic diacritics & PoS tags with

maximum likelihood probability according to a

statistical language model built from a training corpus

annotated with PoS tags & syntactic diacritics [3].

Figure 1 shows the architecture of this diacritization

system.

The deployed statistical disambiguation and language

modeling [2], [4] in our diacritization system are

described in section 4.

Output fully
Diacritized Arabic

Text

Arabic Syntactic
Diacritizer

Arabic PoS Tags

Arabic PoS
Tagger

Arabic Morphemes
&

Morphological Diacritics

Arabic
Morphological

Analyser

Input Plain Arabic Text

Arabic
Lexicon

Morphemes
language

model

PoS Tags
Syntactic
Diacritics
language

model

A* Searcher

M-grams
likelihood
estimator

Figure 1: The architecture of Arabic diacritizer statistically

disambiguating factorized Arabic text.

3. Disambiguating a Hybrid of Full-Form

& Factorized Words

Aiming to enhance the performance of the Arabic

diacritizer of factorized Arabic text we developed a

hybrid system that combines the morphology based

diacritizer with another diacritizer that is based on

full-form words. Figure 2 shows the architecture of

this hybrid Arabic diacritizer.

A large Arabic text corpus with a revised full

morphological and syntactic phonetic annotation is

used to build a dictionary of full-form Arabic words

vocabulary. In the offline phase also, this text corpus

is indexed and used to build a statistical language

model of full-word m-grams. In the runtime; each

word in the input Arabic text is searched for in this

dictionary by the “Word Analyzer and Segmentor”

module. If the word is found, the word is called

“analyzable” and all its existed diacritization

possibilities are retrieved from the dictionary and

called word analyses. A contiguous series of

analyzable words in the input text is called

“analyzable segment”. The analyses of the words in an

analyzable segment constitute a lattice, as shown in

figure 3, that is disambiguated via m-grams

probability estimation and A* lattice search to infer the

most likely sequence of diacritizations. The diacritized

full-form words of the disambiguated analyzable

segments are concatenated to the input words in the

un-analyzable segments, if any, to form a less

ambiguous sequence of Arabic text words. The latter

sequence is then handled by the aforementioned

“Factorizing Disambiguator” that is illustrated in

section 3.

Unanalyzable

segments

Analyzable
segments

Word
analyzer and

segmentor

A* Searcher

M-grams
likelihood

estimator

Words

disambiguator

Diacritized
segments

Factorizing
disambiguator

system

Diacritized
text

Words
m-grams
language

model

Dictionary

Words m-grams
language model

builder

Converted text

Text to index

converter
 Training

Text

Dictionary

builder

 Offline phase

 Input Text

Figure 2: The hybrid Arabic diacritization architecture

disambiguating factorized and full-form words.

56

….

….

…….
…

.

…
.

…
.

…
.

Analyzable segment Unanalyzable segment Analyzable segment

Segment analyses Segment analyses

1),1(na
1,pa

jna),1(kpa ,

1,1a
1,ea

ca ,1hea ,

nw
1wew1nw 1ewpw

Figure 3: “Analyzable Segments” and “Un-analyzable

Segments” in input text. 2

4. Statistical Disambiguation Method
In both architectures presented on sections 2 and 3

above, the challenging ambiguity of multiple possible

solutions at each word of the input text lead to the

composition of a trellis abstracted in figure 4 below.

1w 2w
Lw

1,1a • 1,2a • 1,La •

2,1a • 2,2a • 2,La •

1,1 Ja •
2,2 Ja •

LJLa , •

a1 2a La

Figure 4: The ambiguity of multiple solutions of each word

in the input text W leading to a solution trellis of possible

analyses (a 1× a 2× ... × a L).

To resolve this ambiguity and infer the most

statistically sound sequence of solutions; I

, we rely

on the well established approach of maximum a

posteriori probability (MAP) estimation [2], [4], [11],

[13], [15] famously formulated by:

)()|(maxarg
)(

)()|(
maxarg)|(maxarg IPIOP

OP

IPIOP
OIPI

III

…Eq (4.1)

Where (O) is the output observations and (I) is the

input observations. In other pattern recognition

problems like Optical Character Recognition (OCR)

and automatic speech recognition (ASR), the term

P(O|I) referred to as the likelihood probability, is

modeled via probability distributions; e.g. HMM in

ASR. Our aforementioned language factorization

models and/or dictionary retrieval enable us to do

better by viewing the available formal structure, in

terms of probabilities, as a binary decision; i.e. a

2 The direction of words in the text in this figure is

considered from right to left.

decision of whether the observation obeys the formal

rules or not. This simplifies MAP formula above into:

)(maxarg IPI
I

 …Eq (4.2)

 Where is the space of factorization model or

dictionary, and P(I) is the independent probability of

the input which is called the statistical language model

(SLM). The term P(I) then expresses the m-grams

probability estimated according to the distributions

computed from the training corpus.

Using the chain rule for decomposing marginal into

conditional probabilities, the term P(I) may be

approximated by:

L

i

i

Nii aaPQP
1

1)|()(…Eq (4.3)

 Where N is maximum affordable m-gram length in

the SLM and L is the number of input observations.

These conditional probabilities are simply calculated

via the famous Bayesian formula. However, the severe

Zipfian sparseness of m-grams of whatever natural

language entities necessitates more elaboration. So,

the Good-Turing discount and back-off techniques are

also deployed to obtain reliable estimations of rarely

or never occurring events respectively [2], [4], [11],

[12], [15]. These techniques are used for both building

the discrete distributions of linguistic entities from

labeled corpora, and also for estimating the

probabilities of any given m-gram of these entities in

the runtime.

Using a variant of A*-based algorithm; e.g. beam

search, is the best known way for obtaining the most

likely sequence of analyses among the exponentially

increasing space S = a 1 × a 2 × ... × a L of possible

sequences (paths) implied by the trellis’s topology in

light of the MAP formula by obtaining:

L

i

ji

jhiji

L

i

ji

jhiji

jL

j

i

hii

i

hii

L

aaP

aaP

aPQ

1

),1(

),(,

1

),1(

),(,

,

,1

)1(

)(

)1(

)(

1

|logmaxarg

|maxarg

maxarg

S

S

S

 …Eq (4.4)

To obtain the sequence realizing this maximization,

the A* algorithm follows a best-first path strategy

while selecting the path (through the trellis) for

expanding next. This best-first strategy is interpreted

in the sense of the statistical score of the path till its

terminal expansion node ak,j given by:

k

i

ji

jNijijk
i

Niik
aaPakg

1

),1(

),1(,,
)1(

)1(
|log, …Eq (4.5)

To realize maximum search efficiency; i.e. minimum

number of path expansions, a heuristic function

57

(typically called h*) is added to the g function while

selecting the next path to expand during the A* search

so that:

 LakhakgLakf
kkk jkjkjk ,,,,, ,,,

 …Eq (4.6)

To guarantee the admissibility of A* search; i.e. the

guarantee for the search to terminate with the path

with maximum score, the h* function must not go

below a minimum upper bound of the probability

estimation of the remainder of the nodes sequence in

the path being expanded. For our problem this

function is being estimated according to:

NLP

NkNL

PPNL

PP

NkNLPkLP

Lqkh

L

ki

i

N

ki

iN

N

ki

i

L

Ni

N

L

ki

NN

jk k

1

max,

1

1

max,max,

1

1

max,max,

1

max,max,

,

);log(

1,

);log()log()1(

)log()log(

1,);log()()log(

,,

…Eq (4.7)

Where Pmax,N is the maximum probability of all input

observations at the maximum affordable m-gram

length in the SLM and Pmax,i is the maximum

probability of all input observations at m-gram length

i < N. Refer to [2], [4], [12], [13], [15] for proofs and

full details on the statistical disambiguation methods

reviewed here.

5. Related Work

Among the other recent work on the tough problem of

Arabic diacritization, two groups have made

remarkable attempts.

- I. Zitouni et al. (2006) [18] follow a statistical model

based on the framework of maximum entropy. Their

model combines different sources of information

ranging from lexical, segment-based, and PoS

features. They use statistical Arabic morphological

analysis to segment each Arabic word into a prefix, a

stem, and a suffix. Each of these morphemes is called

a segment. PoS features are then generated by a

parsing model that also uses maximum entropy. All

these features are then integrated in the maximum

entropy framework to infer the full diacritization of

the input words sequence. [18]

- N. Habash and O. Rambow (2007) [9] use

Morphological Analysis and Disambiguation of

Arabic (MADA) system [10]. They use case, mood,

and nunation as features, and use the Support Vector

Machine Tool (SVMTool) [8] as a machine learning

tool. They then build an open-vocabulary SLM with

Kneser-Ney smoothing using the SRILM toolkit [18].

Habash & Rambow made experiments using the full-

form words and a lexemes (prefix, stem, and suffix)

citation form. The best results we compare with in

table 5 below are the ones they obtain with the

lexemes form with trigram SLM [9].

6. Experimental Results

6.1. Experimental Setup

The annotated DB used to train our aforementioned

Arabic diacritizers consist of the following packages:

I- A standard Arabic text corpus with as size ≈ 750K

words collected from numerous domains over diverse

domains. This package is called TRN_DB_I.

It should be noted that the text of each domain is

collected from several sources. This text corpus is

morphologically analyzed, PoS tagged, and

phonetically transcripted. All these kinds of

annotations are manually revised and validated [17].

II- An extra standard Arabic text corpus with as size ≈

2500K words that is only phonetically transcripted in

full without any extra annotation. This corpus is

mainly extracted from classical Islamic literature. This

package is called TRN_DB_II3. This kind of

annotation is done manually but with just one revision.

So, it might contain some errors that could be a source

of some errors.

III- The test data is rather challenging. It consists of

11K words that are manually annotated for

morphology, PoS and phonetics. This test text covers

diverse domains. This test package is called

TST_DB.4 The text of TST_DB is collected from

several sources other than those used to obtain the text

of TRN_DB_I and TRN_DB_II.

The three experiments discussed below have been

conducted to evaluate the performance of our Arabic

diacritization via both the two architectures presented

in this paper; the one disambiguating factorized text

features - called “Factorizing Diacritizer” - and the

hybrid one – called “Hybrid Diacritizer”.

6.2. Experiments Design & Results Analysis

6.2.1. Experiment no. 1:

This experiment compares the diacritization accuracy

of the two architectures with both relying on SLM’s

built from the same Arabic text corpus. The change of

diacritization accuracy of both with the gradual

increase of training corpus size is also sensed. All

these measure are registered in table 3 below.

3 http://www.RDI-eg.com/RDI/TrainingData is where to

download TRN_DB_II.
4 http://www.RDI-eg.com/RDI/TestData is where to

download TST_DB.

58

http://www.rdi-eg.com/RDI/TrainingData
http://www.rdi-eg.com/RDI/TestData

Training

corpus

size

Morphological errors Syntactical errors

Factorizing

diacritizer

Hybrid

diacritizer

Factorizing

diacritizer

Hybrid

diacritizer

128k 11.5% 9.2% 26.1% 21%

256k 11.8% 7.9% 25.6% 18.7%

512k 9.9% 6.5% 23.3% 16.8%

750k 7.5% 7.0% 24.6% 16.0%

Table 3: Morphological & syntactic diacritization accuracies

of the factorizing diacritizer versus the hybrid one.

These results show that the hybrid diacritizer

outperforms the factorizing one with the mentioned

training and test data. While the difference between

the syntactical diacritization error rates is clearly wide,

the difference between the morphological error rates is

much closer and is vanishing with the increase of

training data.

So, one may also speculate that the accuracy of the

factorizing diacritizer may catch that of the hybrid one

with a much more increase in the size of the training

data that is needed to capture the more complicated

behavior of the Arabic syntactic phenomenon than the

Arabic morphological one.

Unfortunately, at the moment we do not have more

annotated data of the type of TRN_DB_I that is

needed to build the language models for the

factorizing diacritizer.

6.2.2. Experiment no. 2:

As the training data of type TRN_DB_II is less

expensive to afford than that of type TRN_DB_I, we

could afford a training corpus of the former type of

size 2500K words. So, the un-factorizing part of the

hybrid diacritizer can rely on SLM’s from up to 750K

+ 2500K words.

The factorizing diacritizer can of course not benefit

from training data beyond that of the annotated 750K

words of TRN_DB_I.

This experiment hence aims to study the effect of

increasing the training data size in the un-factorizing

SLM on the error rate of the hybrid Arabic diacritizer.

Table 4 below shows the obtained measured error

rates.

Training corpus size
Morphological

errors

Syntactical

errors

Size Of(TRN_DB_I) =

750K words
7.0% 16.0%

Size Of(TRN_DB_I) +

½ Size Of(TRN_DB_II) =

2000K words

4.9% 13.4%

Size Of(TRN_DB_I) +

Size Of(TRN_DB_II) =

3250K words

3.6% 13.0%

Table 4: Morphological and syntactic diacritization error

rate of the hybrid diacritizer at large training data.

This experiment reveals that the syntactical

diacritization accuracy seems to asymptote its

saturation at training corpora exceeding 2000K words.

It seems that it is hard to get further significant

enhancement via statistical means alone by increasing

the training corpus. Achieving error rates below that

13% or so seems to need some genuine merger with

more linguistically informed tools.

6.2.3. Experiment no. 3:

The architecture of the hybrid diacritizer has been

explained in section 4 above where input words not

found in the full-form words dictionary (also called

out of vocabulary (OOV) words) are handled by the

factorizing diacritizer within the statistical context of

neighboring diacritized words retrieved from that

dictionary. The diacritization word error rate of the

hybrid diacritizer (WERh) has hence two components;

the un-factorizing one (WERun-fac) and the factorizing

one (WERfac); WERh = WERfac + WERun-fac.

As it is insightful to know the share of both WERun-fac

and WERfac in WERh, all these rates are measured for

the hybrid diacritizer running on SLM built from the

largest available training data sets; i.e. TRN_DB_I +

TRN_DB_2.

These measurements are given by table 5 below:

Training corpus

size

Ratio

of

OOV

Morphological

Errors

Syntactical

Errors

WERfac
 WERh

 WERfac
 WERh

Size Of(TRN_DB_I)

+ Size

Of(TRN_DB_II) =

3250K words

13.7% 2.1% 3.6% 8.1% 13.0%

Table 5: Shares of the factorizing and un-factorizing

diacritization error rates in the hybrid diacritization error

rate.

7. Conclusion and Future Work

It has got clear after our extensive research and

experimentation on the tough problem of full Arabic

diacritization that the best strategy to realize usable

results is to marry statistical methods with linguistic

factorization ones; e.g. morphological analysis and

PoS tagging. Fully non factorizing statistical methods

working on full-form words are faster to learn but

suffer from poor coverage (OOV) which can be

complemented by linguistic factorization analyzers.

Moreover, there seems to be an asymptotical error

margin that cannot be squeezed by the state-of-the-art

systems including ours esp. for syntactical

diacritization without some assistance of a higher-

level NLP layer(s); e.g. semantic analysis. After all,

syntactic diacritization (case ending) is a projection of

a hierarchical grammatical phenomenon that cannot be

fully modeled via the statistical inference of linear

sequences whatever long is its horizon.

Our presented system shows competent error margins

with other state-of-the-art systems attacking the same

problem. It has a clear plus with morphological

59

diacritization. Moreover, when one account for the

sophistication of our training and test data vs. the

reported training and test data used with the other

systems, some extra credit may be given to ours esp.

under realistic conditions.

References

I- References in English

[1] M. Attia, M. Rashwan, A. Ragheb, M. Al-

Badrashiny, H. Al-Basoumy, S. Abdou, A

Compact Arabic Lexical Semantics Language

Resource Based on the Theory of Semantic

Fields, Lecture Notes on Computer Science

(LNCS): Advances in Natural Language

Processing, Springer - Verlag Berlin Heidelberg;

www.SpringerOnline.com, LNCS/LNAI; Vol.

No. 5221, Aug. 2008.

[2] M. Attia, Theory and Implementation of a Large-

Scale Arabic Phonetic Transcriptor, and

Applications, PhD thesis, Dept. of Electronics and

Electrical Communications, Faculty of

Engineering, Cairo University, Sept. 2005.

[3] M. Attia, M. Rashwan, A Large-Scale Arabic PoS

Tagger Based on a Compact Arabic PoS Tags-

Set, and Application on the Statistical Inference

of Syntactic Diacritics of Arabic Text Words,

Proceedings of the Arabic Language

Technologies and Resources Int’l Conference;

NEMLAR, Cairo, 2004.

[4] M. Attia, M. Rashwan, G. Khallaaf, On

Stochastic Models, Statistical Disambiguation,

and Applications on Arabic NLP Problems, The

Proceedings of the 3rd Conference on Language

Engineering; CLE’2002, by the Egyptian Society

of Language Engineering (ESoLE);

www.ESoLE.org.

[5] M. Attia, A Large-Scale Computational

Processor of the Arabic Morphology, and

Applications, M.Sc. thesis, Dept. of Computer

Engineering, Faculty of Engineering, Cairo

University, 2000.

[6] V. Cavalli-Sforza, A. Soudi, T. Mitamura, Arabic

Morphology Generation Using a Concatenative

Strategy, ACM International Conference

Proceeding Series; Proceedings of the first

conference on North American chapter of the

Association for Computational Linguistics

(ACL), 2000.

[7] J. Dichy, M. Hassoun, the DINAR.1 (DIctionnaire

INformatisé de l’ARabe, version 1) Arabic

Lexical Recourse, an outline of contents and

methodology, The ELRA news letter, April-June

2005, Vol.10 n.2, France.

[8] J. Giménez, L. Màrquez, SVMTool: A General

PoS Tagging Generator Based on Support Vector

Machines; The proceedings of LREC’04, 2004.

[9] N. Habash, O. Rambow, Arabic Diacritization

through Full Morphological Tagging,

Proceedings of the 8th Meeting of the North

American Chapter of the Association for

Computational Linguistics (ACL); Human

Language Technologies Conference (HLT-

NAACL) 2007.

[10] N. Habash and O. Rambow, Arabic

Tokenization, Part-of-Speech Tagging and

Morphological Disambiguation in One Fell

Swoop, Proceedings of ACL’05, 2005.

[11] D. Jurafsky, J. H. Martin, Speech and Language

Processing; an Introduction to Natural Language

Processing, Computational Linguistics, and

Speech Processing, Prentice Hall, 2000.

[12] S. M. Katz, Estimation of Probabilities from

Sparse Data for the Language Model Component

of a Speech Recognizer, IEEE Transactions on

Acoustics, Speech and Signal Processing, vol.

ASSP-35 no. 3, March 1987.

[13] N. J. Nilsson, Problem Solving Methods in

Artificial Intelligence, McGraw-Hill, 1971.

[14] A. Ratenaparkhi, Maximum Entropy Models for

Natural Language Ambiguity Resolutions, PhD

thesis in Computer and Information Science,

Pennsylvania University, 1998.

[15] H. Schütze, C. D. Manning, Foundations of

Statistical Natural Language Processing, the MIT

Press, 2000.

[16] A. Stolcke, (SRILM) An Extensible Language

Modeling Toolkit, The Proceedings of the

International Conference on Spoken Language

Processing (ICSLP), 2002.

[17] M. Yaseen, et al., Building Annotated Written

and Spoken Arabic LR’s in NEMLAR Project,

LREC2006 conference http://www.lrec-

conf.org/lrec2006, Genoa-Italy, May 2006.

[18] I. Zitouni, J. S. Sorensen & R. Sarikaya,

Maximum Entropy Based Restoration of Arabic

Diacritics, Proceedings of the 21st International

Conference on Computational Linguistics and

44th Annual Meeting of the Association for

Computational Linguistics (ACL); Workshop on

Computational Approaches to Semitic

Languages; Sydney-Australia, July 2006;

http://www.ACLweb.org/anthology/P/P06/P06-

1073.

II- References in Arabic

[19] (A. Arragehy, 1993) ُالتَّطبيقُ الصَّرِفيُّ، عَبِدُهُ الرَّاجِحيّ، دار

 الَمعِرِفَةِ الَجامِعِيَّةِ، الإسِكَنِدَريَّةُ،1993

60

http://www.springeronline.com,/
http://www.esole.org/
http://www.esole.org/
http://www.esole.org/
http://www.lrec-conf.org/lrec2006
http://www.lrec-conf.org/lrec2006
http://www.aclweb.org/anthology/P/P06/P06-1073
http://www.aclweb.org/anthology/P/P06/P06-1073

