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Abstract 
This paper introduces a two-layer stochastic system to automatically diacritize raw Arabic text that is known to be quite a tough 
problem. The first layer tries to decide about the most likely diacritics by choosing the sequence of full-form Arabic word 
diacritizations with maximum marginal probability via long A* lattice search and m-gram probability estimation. When full-form 
words happen to be out-of-vocabulary, the second layer is resorted to. This second layer factorizes each Arabic word into its 
possible morphological constituents (prefix, root, pattern and suffix), then uses m-gram probability estimation and A* lattice 
search to select among the possible factorizations to get the most likely diacritizations sequence. While the second layer has the 
advantage of excellent coverage over the Arabic language, the first layer enjoys a better disambiguation for the same size of 
training corpora especially for inferring syntactical (case-based) diacritics. The presented hybrid system enjoys the advantages of 
both layers. After a background on Arabic morphology & PoS tagging, the paper details the workings of both layers and the  
architecture of the hybrid system. 

1. Introduction 

Automatic words diacritization is one of the NLP 

challenges with languages having diacritics unveiling 

the phonetic transcription of their words. Arabic is an 

example of such languages where different diacritics 

over for the same spelling produce different words 

with maybe different meanings (e.g. عِهْى  “science”, 

 … ” “knew  عَهِىَ ,” “taught   عَهَّىَ ,” “flag عَهَى

etc.). Text-to-speech (TTS), Part-of-Speech (PoS) 

tagging, Word Sense Disambiguation (WSD), and 

Machine Translation can be enumerated among a 

longer list of applications that vitally benefit from 

automatic diacritization. One major challenge with 

Arabic is its rich derivative and inflective nature, so it 

is very difficult to build a complete vocabulary that 

cover all (or even most of) the Arabic generable 

words. In fact, while Arabic is on the extreme of 

richness as per its vocabulary when regarded as full-

form words, this language is also on the extreme of 

compactness of atomic building entities due to its very 

systematic and rich derivative and inflective nature. 

Hence, the importance of sound Arabic language 

factorization, esp. morphological analysis, gets more 

crucial for Arabic diacritization. 

Over more than 10 years we have been building 

Arabic diacritization systems that factorize input 

Arabic text into all the possible lexemes and case 

diacritics then statistically disambiguate the most 

likely sequence of these entities via deep lattice 

search, whence infer the most likely diacritization and 

phonetic transcription of the input text. While the 

virtue of this methodology is its excellent coverage of 

the language, its drawback is its relatively sluggish 

attenuation of the disambiguation error margin with 

increasing the annotated training corpora which is 

expensive and time consuming to build and validate.  

So, we have started recently to try the same statistical 

language modeling and disambiguation methodologies 

over full-form Arabic words instead of factorized 

ones. While this proved to enhance the error margin 

faster than the former approach, it apparently suffers 

from the problem of poor coverage. It has then been 

realized that a hybrid of the two approaches may 

enjoy the best of each. 

The architecture of this hybrid system is detailed over 

section 3 of this paper after revising our Arabic 

morphological analysis & PoS tagging models and the 

architecture of the Arabic diacritization 

disambiguating the factorized output after these 

analyses over section 2. Section 4 explains the 

statistical language modeling as well as lattice search 

deployed in both architectures. In section 5 the most 

recent related works are mentioned. 

In section 6, the set-up and results of our experiments 

are described. Whence the paper is concluded over 

section 7 with suggestions for further future work. 

2. Arabic Factorization via Morphological 

Analysis and PoS Tagging  

The diacritization of an Arabic word consists of two 

components; morphology-dependent and syntax-

dependent ones. While the morphological 

diacritization distinguishes different words with the 

same spelling from one another; e.g. عِهْى which means 

“science” and عَهَى which means “flag”, the syntactic 

case of the word within a given sentence; i.e. its role 

in the parsing tree of that sentence, determine the 

54

http://www.rdi-eg.com/
mailto:%7BMohsen_Rashwan,%20Mohammed.Badrashiny,%20m_Atteya,%20sAbdou%7D@RDI-eg.co


syntax-dependent diacritic of the word. For example; 

انرياضيات عِهْىَ درسِثُ  implies the syntactic diacritic of 

the target word - which is an “object” in the parsing 

tree - is “Fatha”, while ُانعهوو جميعَ انرياضياتِ عِهْىُ يفيد  
implies the syntactic diacritic of the target word – 

which is a “subject” in the parsing tree - is “Damma”. 

2.1. Arabic Morphological Analysis: 

Our Arabic morphological model assumes the 

canonical structure uniquely representing any given 

Arabic word w to be a quadruple of lexemes (or 

morphemes) so that w→q = (t: p, r, f, s) where p is 

prefix code, r is root code, f is pattern (or form) code, 

and s is suffix code. The type code t can signify words 

belonging to one of the following 4 classes: Regular 

Derivative (wrd), Irregular Derivative (wid), Fixed (wf), 

or Arabized (wa). 

Prefixes and suffixes; P and S, the 4 classes applied on 

patterns giving Frd, Fid, Ff, and Fa, plus only 3 classes 

applied on roots1; Rd, Rf, and Ra constitute together the 

9 categories of lexemes in this model. The total 

number of lexemes of all these categories in our 

model is around 7,800. With such a limited set of 

lexemes, the dynamic coverage exceeds 99.8% 

measured on large Arabic text corpora excluding 

transliterated words. [5] 

Table 1 below shows this model applied on few 

representative sample Arabic words. 

Sample 

word 

Word 

type 

Prefix 

& 

prefix 

code 

Root 

& 

root 

code 

Pattern 

& 

pattern 

code 

Suffix 

& 

suffix 

code 

ًَا  فَـ Fixed فَ
2 

 لَّذِياَ
87 

 مَا
48 

 ـ
0 

 Regular جَحَنَاوَنه

Derivative 
 جـ
86 

ن و ل 
4077 

 تَفَاعَلَ
176 

 ـه
8 

 Regular اَنْكِحَابَات

Derivative 
 انـ

9 

ك ت 

 ب
3354 

 فِعَال
684 

 ـات
27 

ًِيَّة  Regular اَنْعِهْ

Derivative 
 انـ

9 
ع ل م 

2754 

 فِعِل
842 

 ـيَّة
28 

 Fixed يِنِ
 ـ
0 

  نِمِـ
63 

  نِـمِ
118 

 ـ
0 

 Regular يَوَاضِيع

Derivative 
 ـ
0 

و ض 

ع 
4339 

 مَفَاعِيل
93 

 ـ
0 

Table 1: Arabic morphological analyses examples. 

                                                            
1 The roots are common among both the regular and 

irregular derivative Arabic words. 

2.2. Arabic PoS Tagging: 

Our Arabic PoS-tagging model relies on a compact set 

of Arabic PoS tags containing only 62 tags that cover 

all the possible atomic context-free syntactic features 

of Arabic words. While many of these Arabic PoS 

tags may have corresponding ones in other languages, 

few do not have such counterparts and may be specific 

to the Arabic language. 

This PoS tag-set has been extracted after a thorough 

scanning and redundancy elimination of the morpho-

syntactic features of the 7,800 lexemes in our 

morphologically factorized Arabic lexicon. 

Completeness, atomicity, and insurability of these 

scanned morpho-syntactic features were the criteria 

adhered to during that process [2], [3]. 

Due to the atomicity of our Arabic PoS-tags as well as 

the compound nature of Arabic lexemes in general, 

the PoS labels of Arabic lexemes are represented by 

PoS tags-vectors. Each lexeme in our Arabic 

factorized lexicon is hence labeled by a PoS tags-

vector. 

While the Arabic PoS-tagging of stems is retrieved 

from the PoS label of the pattern lexeme only, not the 

root’s, the PoS-tagging of the affixes is obtained from 

the PoS labels of the prefix and suffix. So, the Arabic 

PoS-tagging of a quadruple corresponding to a 

morphologically factorized input Arabic word is given 

by the concatenation of its PoS labels of the prefix, the 

pattern, and suffix respectively after eliminating any 

redundancy. Table 2 shows the Arabic PoS-tagging of 

few sample words. For more details on this Arabic 

PoS-tagging model along with its underlying PoS tag-

set refer to [3] and chapter 3 of [2]. 

Sample 

word 
Arabic PoS tags vector 

ًَا  [Conjunction, Noun, Relative Pronoun, Null Suffix] فَ

[عطف، اسى، اسى يوصول، لا لاحقة]  

 [Present, Active, Verb ,Objective Pronoun] جَحَنَاوَنه

[يضارع، يبني نهًعهوو، فعم، ضًير نصب]  

 [Definitive, Noun, Plural, Feminine] اَنْكِحَابَات

[يؤنَّث ال انحعريف، اسى، جمع،]  

 [Null Prefix, Preposition, Null Suffix] يِنِ

[لا سابقة، حرف، لا لاحقة]  

 [Null Prefix, Noun, No SARF, Plural, Null Suffix] يَوَاضِيع

[لا سابقة، اسى، ممنوع ين انصرف، جمع، لا لاحقة]  

Table 2: Samples of PoS tag-vectors of Arabic words. 

2.3. Arabic Diacritization via Statistically 

Disambiguating Factorized Arabic Text: 

The morphological diacritization of a given word is 

directly extractable from the prefix, pattern, and suffix 

lexemes of the morphological analysis of that word. 

The issue here is to disambiguate the multiple 
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analyses proposed by the Arabic morphological 

analyzer. In the absence of deeper linguistic 

processing, statistical disambiguation is deployed to 

infer the sequence of analyses with maximum 

likelihood probability according to a statistical 

language model built from a morphologically 

annotated training corpus. 

For syntactic diacritization the PoS-tag vectors of a 

sequence of Arabic words along with the possible 

syntactic diacritics of each word are obtained after its 

morphological disambiguation. Statistical 

disambiguation is deployed again to infer the 

sequence of syntactic diacritics & PoS tags with 

maximum likelihood probability according to a 

statistical language model built from a training corpus 

annotated with PoS tags & syntactic diacritics [3]. 

Figure 1 shows the architecture of this diacritization 

system.  

The deployed statistical disambiguation and language 

modeling [2], [4] in our diacritization system are 

described in section 4.  

Output fully 
Diacritized Arabic 

Text

Arabic Syntactic 
Diacritizer

Arabic PoS Tags

Arabic PoS 
Tagger

Arabic Morphemes
&

Morphological Diacritics

Arabic 
Morphological 

Analyser

Input Plain Arabic Text

Arabic 
Lexicon

Morphemes 
language 

model

PoS Tags 
Syntactic 
Diacritics 
language 

model 

A* Searcher

M-grams 
likelihood 
estimator

 
Figure 1: The architecture of Arabic diacritizer statistically 

disambiguating factorized Arabic text. 

3. Disambiguating a Hybrid of Full-Form 

& Factorized Words 

Aiming to enhance the performance of the Arabic 

diacritizer of factorized Arabic text we developed a 

hybrid system that combines the morphology based 

diacritizer with another diacritizer that is based on 

full-form words. Figure 2 shows the architecture of 

this hybrid Arabic diacritizer. 

A large Arabic text corpus with a revised full 

morphological and syntactic phonetic annotation is 

used to build a dictionary of full-form Arabic words 

vocabulary. In the offline phase also, this text corpus 

is indexed and used to build a statistical language 

model of full-word m-grams. In the runtime; each 

word in the input Arabic text is searched for in this 

dictionary by the “Word Analyzer and Segmentor” 

module. If the word is found, the word is called 

“analyzable” and all its existed diacritization 

possibilities are retrieved from the dictionary and 

called word analyses. A contiguous series of 

analyzable words in the input text is called 

“analyzable segment”. The analyses of the words in an 

analyzable segment constitute a lattice, as shown in 

figure 3, that is disambiguated via m-grams 

probability estimation and A* lattice search to infer the 

most likely sequence of diacritizations. The diacritized 

full-form words of the disambiguated analyzable 

segments are concatenated to the input words in the 

un-analyzable segments, if any, to form a less 

ambiguous sequence of Arabic text words. The latter 

sequence is then handled by the aforementioned 

“Factorizing Disambiguator” that is illustrated in 

section 3. 

Unanalyzable 

segments

Analyzable 
segments

Word 
analyzer and 

segmentor

A* Searcher

M-grams 
likelihood 

estimator

Words 

disambiguator

Diacritized 
segments

Factorizing 
disambiguator 

system

Diacritized 
text

Words
m-grams 
language 

model

Dictionary

Words m-grams 
language model 

builder

Converted text

Text to index 

converter
 Training 

Text

Dictionary 

builder

  Offline phase

 Input Text

 
Figure 2: The hybrid Arabic diacritization architecture 

disambiguating factorized and full-form words. 
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1,1a
1,ea

ca ,1hea ,

nw
1wew1nw 1ewpw

Figure 3: “Analyzable Segments” and “Un-analyzable 

Segments” in input text. 2 

4. Statistical Disambiguation Method 
In both architectures presented on sections 2 and 3 

above, the challenging ambiguity of multiple possible 

solutions at each word of the input text lead to the 

composition of a trellis abstracted in figure 4 below. 

1w  2w   
Lw  

1,1a • 1,2a •  1,La • 

2,1a • 2,2a •  2,La • 

       

1,1 Ja • 
2,2 Ja •  

LJLa , • 

a1 2a   La  

Figure 4: The ambiguity of multiple solutions of each word 

in the input text W leading to a solution trellis of possible 

analyses (a 1× a 2× ... × a L). 

To resolve this ambiguity and infer the most 

statistically sound sequence of solutions; I


, we rely 

on the well established approach of maximum a 

posteriori probability (MAP) estimation [2], [4], [11], 

[13], [15] famously formulated by: 

   )()|(maxarg
)(

)()|(
maxarg)|(maxarg IPIOP

OP

IPIOP
OIPI

III








 




  

…Eq (4.1) 

Where (O) is the output observations and (I) is the 

input observations. In other pattern recognition 

problems like Optical Character Recognition (OCR) 

and automatic speech recognition (ASR), the term 

P(O|I) referred to as the likelihood probability, is 

modeled via probability distributions; e.g. HMM in 

ASR. Our aforementioned language factorization 

models and/or dictionary retrieval enable us to do 

better by viewing the available formal structure, in 

terms of probabilities, as a binary decision; i.e. a 

                                                            
2 The direction of words in the text in this figure is 

considered from right to left. 

decision of whether the observation obeys the formal 

rules or not. This simplifies MAP formula above into: 

 )(maxarg IPI
I 


                 …Eq (4.2) 

 Where   is the space of factorization model or 

dictionary, and P(I) is the independent probability of 

the input which is called the statistical language model 

(SLM). The term P(I) then expresses the m-grams 

probability estimated according to the distributions 

computed from the training corpus. 

Using the chain rule for decomposing marginal into 

conditional probabilities, the term P(I) may be 

approximated by: 







L

i

i

Nii aaPQP
1

1 )|()(                …Eq (4.3) 

 Where N is maximum affordable m-gram length in 

the SLM and L is the number of input observations. 

These conditional probabilities are simply calculated 

via the famous Bayesian formula. However, the severe 

Zipfian sparseness of m-grams of whatever natural 

language entities necessitates more elaboration. So, 

the Good-Turing discount and back-off techniques are 

also deployed to obtain reliable estimations of rarely 

or never occurring events respectively [2], [4], [11], 

[12], [15]. These techniques are used for both building 

the discrete distributions of linguistic entities from 

labeled corpora, and also for estimating the 

probabilities of any given m-gram of these entities in 

the runtime. 

Using a variant of A*-based algorithm; e.g. beam 

search, is the best known way for obtaining the most 

likely sequence of analyses among the exponentially 

increasing space S = a 1 × a 2 × ... × a L of possible 

sequences (paths) implied by the trellis’s topology in 

light of the MAP formula by obtaining: 
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              …Eq (4.4) 

To obtain the sequence realizing this maximization, 

the A* algorithm follows a best-first path strategy 

while selecting the path (through the trellis) for 

expanding next. This best-first strategy is interpreted 

in the sense of the statistical score of the path till its 

terminal expansion node ak,j given by: 

   










k

i

ji

jNijijk
i

Niik
aaPakg

1

),1(

),1(,,
)1(

)1(
|log,              …Eq (4.5) 

To realize maximum search efficiency; i.e. minimum 

number of path expansions, a heuristic function 
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(typically called h*) is added to the g function while 

selecting the next path to expand during the A* search 

so that: 

     LakhakgLakf
kkk jkjkjk ,,,,, ,,,

             …Eq (4.6) 

To guarantee the admissibility of A* search; i.e. the 

guarantee for the search to terminate with the path 

with maximum score, the h* function must not go 

below a minimum upper bound of the probability 

estimation of the remainder of the nodes sequence in 

the path being expanded. For our problem this 

function is being estimated according to: 

 




















































NLP

NkNL

PPNL

PP

NkNLPkLP

Lqkh

L

ki

i

N

ki

iN

N

ki

i

L

Ni

N

L

ki

NN

jk k

1

max,

1

1

max,max,

1

1

max,max,

1

max,max,

,

);log(

1,

);log()log()1(

)log()log(

1,);log()()log(

,,

…Eq (4.7) 

Where Pmax,N  is the maximum probability of all input 

observations at the maximum affordable m-gram 

length in the SLM and Pmax,i is the maximum 

probability of all input observations at m-gram length 

i < N. Refer to [2], [4], [12], [13], [15] for proofs and 

full details on the statistical disambiguation methods 

reviewed here. 

5. Related Work 

Among the other recent work on the tough problem of 

Arabic diacritization, two groups have made 

remarkable attempts. 

- I. Zitouni et al. (2006) [18] follow a statistical model 

based on the framework of maximum entropy. Their 

model combines different sources of information 

ranging from lexical, segment-based, and PoS 

features. They use statistical Arabic morphological 

analysis to segment each Arabic word into a prefix, a 

stem, and a suffix. Each of these morphemes is called 

a segment. PoS features are then generated by a 

parsing model that also uses maximum entropy. All 

these features are then integrated in the maximum 

entropy framework to infer the full diacritization of 

the input words sequence. [18] 

- N. Habash and O. Rambow (2007) [9] use 

Morphological Analysis and Disambiguation of 

Arabic (MADA) system [10]. They use case, mood, 

and nunation as features, and use the Support Vector 

Machine Tool (SVMTool) [8] as a machine learning 

tool. They then build an open-vocabulary SLM with 

Kneser-Ney smoothing using the SRILM toolkit [18]. 

Habash & Rambow made experiments using the full-

form words and a lexemes (prefix, stem, and suffix) 

citation form. The best results we compare with in 

table 5 below are the ones they obtain with the 

lexemes form with trigram SLM [9]. 

6. Experimental Results 

6.1. Experimental Setup 

The annotated DB used to train our aforementioned 

Arabic diacritizers consist of the following packages: 

I- A standard Arabic text corpus with as size ≈ 750K 

words collected from numerous domains over diverse 

domains. This package is called TRN_DB_I. 

It should be noted that the text of each domain is 

collected from several sources. This text corpus is 

morphologically analyzed, PoS tagged, and 

phonetically transcripted. All these kinds of 

annotations are manually revised and validated [17]. 

II- An extra standard Arabic text corpus with as size ≈ 

2500K words that is only phonetically transcripted in 

full without any extra annotation. This corpus is 

mainly extracted from classical Islamic literature. This 

package is called TRN_DB_II3. This kind of 

annotation is done manually but with just one revision. 

So, it might contain some errors that could be a source 

of some errors. 

III- The test data is rather challenging. It consists of 

11K words that are manually annotated for 

morphology, PoS and phonetics. This test text covers 

diverse domains. This test package is called 

TST_DB.4 The text of TST_DB is collected from 

several sources other than those used to obtain the text 

of TRN_DB_I and TRN_DB_II. 

The three experiments discussed below have been 

conducted to evaluate the performance of our Arabic 

diacritization via both the two architectures presented 

in this paper; the one disambiguating factorized text 

features - called “Factorizing Diacritizer” - and the 

hybrid one – called “Hybrid Diacritizer”. 

6.2. Experiments Design & Results Analysis 

6.2.1. Experiment no. 1: 

This experiment compares the diacritization accuracy 

of the two architectures with both relying on SLM’s 

built from the same Arabic text corpus. The change of 

diacritization accuracy of both with the gradual 

increase of training corpus size is also sensed. All 

these measure are registered in table 3 below. 
 

                                                            
3 http://www.RDI-eg.com/RDI/TrainingData is where to 

download TRN_DB_II. 
4 http://www.RDI-eg.com/RDI/TestData is where to 

download TST_DB. 
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Training 

corpus 

size 

Morphological errors Syntactical errors 

Factorizing 

diacritizer 

Hybrid 

diacritizer 

Factorizing 

diacritizer 

Hybrid 

diacritizer 

128k 11.5% 9.2% 26.1% 21% 

256k 11.8% 7.9% 25.6% 18.7% 

512k 9.9% 6.5% 23.3% 16.8% 

750k 7.5% 7.0% 24.6% 16.0% 

Table 3: Morphological & syntactic diacritization accuracies 

of the factorizing diacritizer versus the hybrid one. 

These results show that the hybrid diacritizer 

outperforms the factorizing one with the mentioned 

training and test data. While the difference between 

the syntactical diacritization error rates is clearly wide, 

the difference between the morphological error rates is 

much closer and is vanishing with the increase of 

training data. 

So, one may also speculate that the accuracy of the 

factorizing diacritizer may catch that of the hybrid one 

with a much more increase in the size of the training 

data that is needed to capture the more complicated 

behavior of the Arabic syntactic phenomenon than the 

Arabic morphological one. 

Unfortunately, at the moment we do not have more 

annotated data of the type of TRN_DB_I that is 

needed to build the language models for the 

factorizing diacritizer. 

6.2.2. Experiment no. 2: 

As the training data of type TRN_DB_II is less 

expensive to afford than that of type TRN_DB_I, we 

could afford a training corpus of the former type of 

size 2500K words. So, the un-factorizing part of the 

hybrid diacritizer can rely on SLM’s from up to 750K 

+ 2500K words. 

The factorizing diacritizer can of course not benefit 

from training data beyond that of the annotated 750K 

words of TRN_DB_I. 

This experiment hence aims to study the effect of 

increasing the training data size in the un-factorizing 

SLM on the error rate of the hybrid Arabic diacritizer. 

Table 4 below shows the obtained measured error 

rates. 

Training corpus size 
Morphological 

errors 

Syntactical 

errors 

Size Of(TRN_DB_I) =   

750K words 
7.0% 16.0% 

Size Of(TRN_DB_I) +       

½ Size Of(TRN_DB_II) = 

2000K words  

4.9% 13.4% 

Size Of(TRN_DB_I) +   

Size Of(TRN_DB_II) = 

3250K words 

3.6% 13.0% 

Table 4: Morphological and syntactic diacritization error 

rate of the hybrid diacritizer at large training data. 

This experiment reveals that the syntactical 

diacritization accuracy seems to asymptote its 

saturation at training corpora exceeding 2000K words. 

It seems that it is hard to get further significant 

enhancement via statistical means alone by increasing 

the training corpus. Achieving error rates below that 

13% or so seems to need some genuine merger with 

more linguistically informed tools. 

6.2.3. Experiment no. 3: 

The architecture of the hybrid diacritizer has been 

explained in section 4 above where input words not 

found in the full-form words dictionary (also called 

out of vocabulary (OOV) words) are handled by the 

factorizing diacritizer within the statistical context of 

neighboring diacritized words retrieved from that 

dictionary. The diacritization word error rate of the 

hybrid diacritizer (WERh) has hence two components; 

the un-factorizing one (WERun-fac) and the factorizing 

one (WERfac); WERh = WERfac + WERun-fac. 

As it is insightful to know the share of both WERun-fac 

and WERfac in WERh, all these rates are measured for 

the hybrid diacritizer running on SLM built from the 

largest available training data sets; i.e. TRN_DB_I + 

TRN_DB_2. 

These measurements are given by table 5 below: 

Training corpus 

size 

Ratio 

of 

OOV 

Morphological 

Errors 

Syntactical 

Errors 

WERfac
 WERh

 WERfac
 WERh

 

Size Of(TRN_DB_I) 

+   Size 

Of(TRN_DB_II) = 

3250K words 

13.7% 2.1% 3.6% 8.1% 13.0% 

Table 5: Shares of the factorizing and un-factorizing 

diacritization error rates in the hybrid diacritization error 

rate. 

7. Conclusion and Future Work 

It has got clear after our extensive research and 

experimentation on the tough problem of full Arabic 

diacritization that the best strategy to realize usable 

results is to marry statistical methods with linguistic 

factorization ones; e.g. morphological analysis and 

PoS tagging. Fully non factorizing statistical methods 

working on full-form words are faster to learn but 

suffer from poor coverage (OOV) which can be 

complemented by linguistic factorization analyzers. 

Moreover, there seems to be an asymptotical error 

margin that cannot be squeezed by the state-of-the-art 

systems including ours esp. for syntactical 

diacritization without some assistance of a higher-

level NLP layer(s); e.g. semantic analysis. After all, 

syntactic diacritization (case ending) is a projection of 

a hierarchical grammatical phenomenon that cannot be 

fully modeled via the statistical inference of linear 

sequences whatever long is its horizon. 

Our presented system shows competent error margins 

with other state-of-the-art systems attacking the same 

problem. It has a clear plus with morphological 
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diacritization. Moreover, when one account for the 

sophistication of our training and test data vs. the 

reported training and test data used with the other 

systems, some extra credit may be given to ours esp. 

under realistic conditions. 
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