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Abstract 
Increased interest in the field of text mining, has also witnessed increased interest in the development of more accurate stemmers 
required by various text mining applications. The goal of this work is to present an approach for stemming that  falls somewhere in 
between aggressive and light stemming. Not only does the presented work address the removal of suffixes and prefixes, it also 
introduces a set of rules for removing infixes without the use of a morphological analyzer. The basic premise on which this work is 
based, is that in any reasonably sized corpus, a word and its stem are likely to both appear in the corpus. By capitalizing on this 
observation, the work aims to present a method for rapidly building stem lists from a small set of documents as well as make use of the 
local context of a document when carrying out stemming. The evaluation of the work shows that it significantly improves stemming 
accuracy. It also shows that by improving stemming accuracy, a task such as automatic annotation can also be significantly improved.  
 

Introduction  

Stemming is a very common operation in any information 
retrieval system as well as almost all text mining 
applications. The importance of building a good stemmer 
lies in the fact that stemming can directly affect the 
performance of any application of which it is a 
component. Research has shown that stemming of Arabic 
terms is a particularly difficult task because of its highly 
inflected and derivational nature (Larkey et al., 2002). 
Most work in this area either tries to reduce a given word 
to its root (aggressive stemmers), or to identify a set of 
prefixes and suffixes the removal of which can have a 
positive  impact on a given task such as information 
retrieval (light or simple stemmers). The main advantage 
of using a light stemmer is that it is  very simple to apply  
and though not very accurate in its stemming 
performance, has proved effective for the task of 
information retrieval. There are instances however when 
light stemmers do not offer the needed accuracy. Tasks 
such as semantic annotation, information extraction, and 
segmentation using lexical chaining, all exemplify such 
cases. In this report, accuracy in stemming is emphasized 
through the proposal of an approach that extends the 
notion of light stemming.  Not only does the presented 
work investigate the removal of suffixes and prefixes, it 
also introduces a set of rules for removing infixes without 
the use of a morphological analyzer. A stem in the context 
of this work, is the singular, and whenever applicable, 
masculine form of a word which does not necessarily map 
to its root (a lema). The basic premise on which this work 
is based, is that in any reasonably sized corpus, a word 
and its stem are likely to both appear in the corpus. This is 
a similar assumption to that adopted by (Xu and Croft, 
1998) in their work on corpus based stemming. But unlike 
their work, focus is placed on building stem lists through 
the application of heuristic transformation rules on words 

in order to reduce each to its singular form. If a word 
resulting from applying a transformation rule on an input 
word (a potential stem), is found to have appeared in the 
corpus, then this word is considered as a stem for the 
input word. It is important to note that this procedure is 
not error free. For example, the same rule that would 
reduce “دروس” to “درس ” can reduce “الغروب” to “غرب” 
which is not its stem, but if both words are in the corpus 
 By .”غروب“ will be assumed to be the stem for ”غرب“
maintaining a stem list containing words that should not 
be further conflated (such as “غروب”), mistakes like this 
can be avoided.  Building such lists from scratch is very 
expensive in terms of human effort and is not feasible in 
general non domain specific applications. The presented 
work however, introduces a methodology for rapidly 
building lists like this through a semi-automatic interface 
and shows how building such  lists can pay off within a 
domain specific application. and shows how building such  
lists can pay off within a domain specific application. The 
rest of this paper is organized as follows: section 2 
presents an overview of the presented work, section 3 
details transformation rules that can be applied to a word 
in order to obtain its stem, section 4 describes the 
procedure for rapidly building a stem list, section 5 
describes experiments carried out to evaluate the 
presented work and their results, and section 6 concludes 
this work and provides future research directions. 

Building and using the stemmer: an overview 

In this work,  building a stemmer is a two phase process. 
In the first phase (training phase), a number of documents 
from an input corpus can be selected for the stem list 
building process. Through a user interface, a human can 
then verify the resulting words and their stems making 
any corrections (if needed)  to ensure that words that 
should not be conflated are stored in the stem list.  In this 
step also, the user can specify stems for irregular words 
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which are then stored in a dictionary.  In the second phase 
(operational phase), given any word or document, 
stemming can be carried out by checking whether its 
potential stem (obtained by applying appropriate rules) 
exists in the stem list or not. Depending on the required 
strictness of the stemmer, the original word whose 
conflated form cannot be matched to an entry in the stem 
list or the input text can be returned, or the corresponding 
lightly stemmed version of the word may be returned. The 
presented work aims to maintain the semantic of the word 
when stemming it as much as possible, but without a 
semantic analyzer this is not always possible. Whenever 
there is ambiguity regarding whether or not to stem a 
word because a proper stem will not be obtained without 
understanding the meaning of the word, the shorter form 
of the term is favoured. For example, the word “مدرسة”  
may mean school in which case according to our 
definition of a stem, it should not be further reduced. The 
same term can also mean teacher the stem of which  is 
 and since this is the shorter form, it is the one that ”مدرس“
will be kept. This feature of course can be controlled 
through the dictionary itself, so if the user of our stemmer 
adds the term مدرسة” to the stem list, then every time this 
term is encountered, it will not be further reduced. There 
are other cases when the removal of the suffix “ة” should 
be avoided. For example, the equivalent of  the term 
“minute” in Arabic is “دقيقة”,. Most light stemmers will 
remove the “ة” at the end which will convert the word to 
 which means “flour” (a totally different word). By  ”دقيق“
maintaining  a list of word stems that contain words such 
as  “دقيقة”  we would know that this word does not need to 
be further conflated.  Like most light stemmers, prefixes 
and suffixes commonly attached to verbs, are not included 
in transformation rules presented by this work. 

Stemming Steps 

The presented stemmer works on three levels: prefix 
removal, suffix removal and infix removal. Each of these 
levels utilizes a different set of rules.   In general, prefix 
removal is first attempted, then suffix followed by  infix 
removal. Each of these steps is described in the following 
sub-sections. 

Prefix Removal 

Prefix removal is the first step to be carried out in either 
training or operational mode. In our work, we’ve divided 
prefixes into two classes, compound prefixes which 
consist of more than one letter and singular prefixes or 
particles that are made up of just a single character.  
Our compound prefix set covers the following patterns: 

 	 ,ال,وال,بال,كال, فال, لل,وبال, ولل, وكال, وفال

Underlined prefixes, denote the set of prefixes not 
removed by the light10 stemmer which is the baseline 
stemmer in this work. For the removal of any prefix, the 
length of the term to be stemmed minus the length of the 
prefix has to be greater than or equal to two, otherwise no 
prefix removal is carried out.  A small experiment was 
carried out to test the effect of removing prefixes in the 
compound prefix set from any word that starts with them 
if they satisfy the length requirements mentioned above 
(except for prefix �). In this experiment 9 documents 
making up a total of  19291 words, were used. From 
these, a total 3851 unique words (excluding stop words, 

single characters and numbers) were extracted. The 
number of words on which prefix removal was applied  
was 1708 (44% of input words). This resulted in the 
generation of 1345 unique terms (a reduction of 21 %).  
Words that started with a prefix, along with their altered 
forms were examined to assess the accuracy of compound 
prefix removal step. After identifying all cases from 
which prefixes should not have been removed, but which 
met the only requirement which is the length condition, it 
was found that these cases are quite rare and that the 
overall accuracy of this step is about 98.7%. For that 
reason, is was decided not to impose any further rules on 
the removal of a prefix in the compound set (i.e if a word 
matches with a prefix in the compound prefix set, we 
simply remove it). 
 
Prefix � is considered as a special case and is handled a 
bit differently than all the other prefixes in the compound 
set. The reason for this, is that a word might have this 
prefix to denote negation or simply because the causation 
prefix “ل”  happened to be attached to a word starting with 
an “ا”. So validation similar to that carried out prefixes in 
the  singular prefix set (is detailed below) is first carried 
out before removing this prefix.   
 
The singular prefix set includes the following 
conjunctions and prepositions: 

ب, ل, ف, ك, و   
Underlined particles, denote the set of prefixes not 
removed by the light10 stemmer. Removing these 
conjunctions and prepositions from a word without 
validating the removal can often result in mistakes. This is 
because this removal means removing the first letter of 
any word that starts with any of this prefixes. So, for 
example “وليد” (baby) would be reduced to “ليد” which has 
no meaning and “فيل” would also be reduced to the 
meaningless word “يل”. This is perhaps why the only 
prefix from this set that a light stemmer removes is the “و” 
which occurs often as a preposition attached to a word. 
But as stated before, the likely hood of error in removal is 
quite high. So, to validate the removal of these in training 
mode, the prefix is first removed and then a check is made 
to see if the resulting word has appeared at least once as 
part of the input corpus. If the term is found, then it is 
assumed that the prefix can be removed safely. In 
stemming mode, the dictionary is first checked for the 
resulting word then if not found,  terms in the input 
document are checked as well.   

Suffix Removal 

The next step after prefix removal, is suffix removal. Two 

suffix sets have been identified as follows: 

Suffix set 1 اته ,ات ,يات 

Suffix set 2 ھا, ون, وا, ين, ان, ية, يه, ھم, ي, ه, ة 

Table 1: Set of suffixed handled by the stemmer 

 
Each of these sets is treated differently. Again, for the 

removal of any suffix in either of the suffix sets, the 

length of the  resulting term must be at least 2 characters 

in length. If this condition is not met, the input term is 

returned as is. If an input term ends with any of the 

suffixes in suffix set 1, the suffix is removed and 

validation is carried out in a similar manner as described 
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before (in training mode this means checking that the 

word resulting from the removal of the suffix has 

appeared at least once in the input corpus. In stemming 

operational mode, this means checking that the resulting 

word either appeared in the dictionary or in the input 

document). If a match is found, the resulting word is 

returned.  If no match is found, the “ة” character is added 

to the resulting word and validation is carried out again. In 

case a  match is found, the resulting word is returned.  If 

no match is found suffixes in suffix set 2 are checked.  

 
Handling of suffixes in the second suffix set is carried out 

in a similar manner. Here, the original word is checked for 

each of the suffixes in the suffix set in the denoted order. 

If the word ends with the suffix, the suffix is removed and 

the resulting word is validated. If found, it is returned. 

Otherwise, a check is made to see whether the resulting 

word ends with a “ت”. If it does, then the “ت” is replaced 

with a “ة”  and the resulting word is validated again. If 

validated, it is returned but otherwise the original word is 

checked for the next suffix until all are exhausted. If no 

match is found in this procedure, the original word is 
returned as is.  

Infix removal 

Infixes usually occur as a part of broken or irregular 

plurals. While there is no straight forward way for 

handling irregular plurals except through the use of 

dictionaries, some of the commonly used broken plurals 
exhibit well defined patterns that can be detected and 

transformed. However, just because a word conforms to 

any of the detected patterns, does not mean that a 

transformation from the pattern to its possible stem is 

valid which is why stemming of broken plurals is not 

usually an easy task.  [Gowder et al, 2004], show that 

simply matching a word to its broken plural pattern, 

results in very low precision. In their work, they 

experimented with various ways for reducing broken 

plurals to their singular forms. In all experiments, input 

words are firstly lightly stemmed using a modified version 

of the aggressive Khoja stemmer [Khoja & Garside, 
1999]. In the first and least accurate experiment, all forms 

that fit the pattern of a broken plural were detected and 

analyzed to see whether or not words that fit these 

patterns are in fact broken plurals. Having found that this 

technique results in very low precision, an alternative 

method which adds further restrictions based on the 

author’s observations to  existing patterns, was adopted. 

Using this method precision increased significantly.  In 

the third variation, a machine learning approach was 

adopted to automatically add restriction rules which 

further improved the results, but the best results of all 
were obtained using a dictionary based approach. Like 

this work, focus in the work of [Gowder et al, 2004]  was 

on ways of correctly identifying patterns within the text 

and developing heuristics in order to determine with 

accuracy that a certain word fits a certain pattern. Their 

work confirms the effectiveness of using stem 

dictionaries, while this work illustrates how to rapidly 

build these. Unlike their work however, even without the 

use of a dictionary, this work aims to increase the 

precision of a match, by checking that a transformation 

from a word that matches a pattern to its potential stem 

results in a word that has already appeared within the 

context in which the word has originated. In case the input 

to the stemmer, is a document, the context (or local 

context) is all unique words that have appeared in that 

document. When the input is a set of documents, then the 

context is the aggregate of all words in all documents. As 

the size of the local context increases, the better the 

chance is for finding a match between a word and its 

potential stem. This has the effect of increasing recall, but 

also decreasing precision, as it is also likely that an 
incorrect match will be found. Examples of patterns 

detected and handled by the developed stemming 

algorithm are shown in  table 2.  

 

PCode Examples Stems 

P1 حدود, خطوط  , سدود  ,حد  خط  , سد   

P2 درس بذور  ,جذور  ,سطور ,دروس , سطر   ,  بذرة , جذر 
P3 مرض,شجرة ,قول اقوال  ,أمراض ,اشجار  

P4 حرف, شھر أحرف, أشھر 

P5 مدارس, مراكب   مركب ,مدرسة 
P6 وصايا, ھدايا  وصية ,ھدية   

P7   ة ماشي, عائل, جانب  مواشي  ,عوائل ,جوانب  

P8 شجرة, وردة, دولة   شجر, ورد,  دول  

P9 د�ئل, قصائد,حشائش دليل, قصيدة, حشيشة   

P10 سائل, قائمة, ةفائد ,ةرائح سوائل ,قوائم, فوائد, روائح  

P11 تراب, جھاز  اتربة, اجھزه 

P12  نجاح ,نوع ,حديث   نجاحا ,نوعا ,حديثا   

Table 2: Examples of patterns handled by the system 

 

For each of the above patterns, a transformation rule is 

defined to transform the broken plural pattern to its 

singular form. Each time a pattern matches and a 

transformation occurs, validation takes place as previously 

described.  If validation results in a match being found, 

then the transformed pattern is assumed to be the stem of 
the original word.   

Procedure for rapidly building a stem list 

In order to rapidly build a stem list which as stated before 

can have the effect of boosting stemming accuracy, a set 

of documents from the input corpus need to be selected as 
a training set. The following steps are then carried out: 

1. read all unique terms in a corpus of documents and 

place in initially empty set allTerms. This step 

includes removal of dialectics and normalization of 

letters. 

2. for each unique term ti 

a. generate term ti' by removing prefixes as detailed 

above from ti 

b. generate term ti'' by removing suffixes as detailed 
above from ti' 

c. generate term ti''' by removing infixed as detailed 

above from ti'' 

d. store ti   and the result potential stem ti''' in a stem 

table.  

3. Display  all  term pairs  (ti , potential_Stem_ ti ) 

stored in the dictionary to the user for validation.  

(user interface is shown in fig 1). What is not shown, 

is that in case the user indicates that a term is 
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incorrectly stemmed (s/he can then enter the correct 

stem for that word).   

4. For each validated entry, store ONLY the validated 

stem in a text file. This now constitutes the stemming 

stem list.  

 

Figure1: Stemming Validation Interface  

 

Evaluation 

When evaluating the proposed approach, the main 

concern was on assessing the stemming accuracy achieved 

by the approach as well as comparing the improvement to 
a baseline system in order to  determine the significance 

of the improvement. It was also important to establish that 

improvement in accuracy can have a contribution to real 

life applications. To address each of these evaluation 

concerns, separate experiments were carried out. These 

are detailed in the following sub-sections.  

Determining improvements in accuracy  

The experiment presented in this sub-section was carried 
out in order to measure and compare the stemming 
accuracy achieved by the proposed approach with that of  
a baseline system The baseline stemmer with which 
comparisons were made, is the light10 stemmer [Larkey et 
al, 2002].  For experimentation purposes, the light 
stemmer was developed in Java using the rules outlined 
for the light10 stemmer in [Larkey et al, 2002].  The 
domain chosen for experimentation was the Agricultural 
domain. To build an Agricultural stem list,  a total of 9 
Agricultural extension documents were used as a training 
set. The total number of words in these documents was 
19291, but unique  nonstop words amounted to only 3869 
terms.  From these, a stem list consisting of 1268 terms 
was built as well as a dictionary for irregular terms 
consisting of 68 terms.  The whole process of reviewing 
the stems and building the stem list took a little less than 2 
hours.  After building the stem list, stemming accuracy 
was tested by applying the built stemmer on a set of 4 
previously unseen, agricultural documents.  Each 

document was stemmed separately using the proposed 
stemmer as well as using a light stemmer. The total 
number of words in these document was: 9818 while the 
average length of each document was 2455 ± 405 words.   
In order to facilitate the manual review of the resulting 
stems, only unique non stopword terms and their stems 
were shown to the evaluator. Stems resulting from the 
proposed approach were shown side by side to stems 
resulting from the light stemmer. Entries such as verbs, , 
English words and misspelled terms were excluded from 
the evaluation process.  However, words that can be either 
verbs or nouns depending on the context, were included 
and were treated as nouns.   A stem was considered 
correct only if it followed our definition of a stem, which 
is that it represents the singular, and whenever possible, 
masculine form of a words. After manually reviewing all 
resulting stems, accuracy for each method on each 
document  was calculated using the following formula: 
 
accuracy(di)=   all_correct_stems(di)/ total_stemmable(di)   
  
where all_correct_stems(di)  is the sum of all correctly 
stemmed words in document di and total_stemmable(di) is 
total number of valid words (that are not stopword, verbs, 
etc)  in document di. The results of this step are shown in 
table 3.   
 

 Proposed Stemmer  Light Stemmer 

Document 1 90.4% 50.9% 

Document 2 89.4% 45.8% 

Document 3 93.1% 55.3% 

Document 4 90.5% 47.2% 

Average 

Accuracy  
90.8% ± 1.59% 49.8±4.25% 

Table 3: Examples of patterns handled by the system 
 
From table 3 it can be seen that on average when using the 
proposed stemmer in conjunction with a stem list there is 
a 82.3% improvement in the accuracy of stemming. 
Despite the fact that the used dataset is a very small one, 
using a t-test to calculate the significance of the difference 
between the results, showed that the difference in 
accuracy between the proposed stemmer and a light one is 
extremely statistically significant (with p < 0.0001).  

Evaluating the  stemmer with real life 
applications  

Have establishing that using the proposed stemmer, better 
stemming accuracy can be achieved, the goal of the 
second experiment was to investigate whether such an 
improvement can in fact have an implication for real 
applications. One of the motivations for developing the 
proposed stemming approach was to use it as part of an 
Arabic semantic annotation system as well as for an 
ontology learning system. For both of these systems it was 
very important to maximize matches between concepts in 
an ontology and their corresponding forms, but not with 
non matching terms as this would  directly affect the 
performance of the semantic annotation system, as well as 
the automatic evaluation of the ontology learning system. 
Using existing stemmers either resulted in missing certain 
important matches as for example for  the concepts 
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“ مرض, امراض ” and “ سماد, اسمدة ” as well as “ حشٮشة, حشائش ” 
or conflated independent concepts such as   “ري and  رية” . 
However, the former case was the more common one. So, 
it was only natural to test the developed stemmer on a 
simplified version of a system that carries out automatic 
annotations.  A description of the full system can be found 
in [El-Beltagy et al , 2007].  Towards this  end, an 
experiment was setup to annotate section headings 
extracted from agricultural documents using concepts 
from an agricultural ontology.  The used ontology 
consisted of 322 concepts. The section headings were 
automatically collected from 90 Agricultural extension 
documents and amounted to 3192 headings. Each heading 
was tagged with zero or more concepts in an ontology if a 
match between phrases in that heading and an entry in the 
ontology was found. Stemming of concepts and headings 
is an essential pre-processing step in the matching 
process. Using a light stemmer in this step resulted in the 
generation of 3260  correct concept annotations, which 
means that  an average of 1.02 tags  were generated per 
heading with a standard deviation of 0.98 tag per heading. 
Substituting the light stemmer with the proposed one and 
using the dictionary generated in the first experiment,  a 
total of 3934 correct  concept annotations were generated 
(no incorrect tags were generated in either experiment). 
So, on average 1.23 tags were generated per heading with 
a standard deviation of 1.04 tags.  Comparing these 
results, it can be observed that using the proposed 
approach resulted in an increase of  20.7% correct tags.  
When the average number of tags were used to establish 
the significance of the difference between the two results, 
the difference was found to be extremely statistically  
significant with p <  0.0001.  Another experiment was 
carried out to determine the effect of stemming on the task 
of keyphrase extraction. In this experiment the KP-Miner 
system was used for keyphrase extraction [El-Beltagy and 
Rafea, 2009].  The used dataset consisted of one hundred  
randomly collected articles from the Arabic Wikipedia 
[Wikipedia, 2008].  Keywords for each article were 
obtained from the keyword meta-tag associated with each, 
but numeric entries (mostly denoting year numbers) were 
ignored and so were Wikipedia related tags (such as 
article seed for example) .   The average number of words 
per document in this dataset is 804 ± 934 and the average 
number of keyphrases is 8.1 ± 3.2. The percentage of  
author assigned keyphrases actually appearing within the 
body of associated articles in this  dataset is 81.8%.   The 
KP-Miner system allows the user to specify the number  
of keypharses to extract for each input document. Setting 
this number to 10,  a comparison was held to see how 
many keyphrases would be correctly extracted when using 
a light stemmer as opposed to using the proposed 
stemmer. Four different configurations for the proposed 
stemmer were used: 

C1: Proposed stemmer is used  with no stem list  
C2:Proposed stemmer is used with no stem list, but in 
conjunction with a light stemmer (i.e stemming is 
enforced). What that means is that after carrying out 
transformations outlined before, a light stemmer is 
invoked on the resulting word.  
C3: Proposed stemmer is used with the stem list 
obtained from agricultural documents  
C4: Proposed stemmer is used with the stem with a 
stem list in conjunction with a light stemmer. 

The results of comparing these configurations with each 

other and with a light stemmer are shown in table 4. 

 
 Total # 

of 
matches 

Average 
Precision  

Average 
Recall 

Avg # of 
matches / 
document  

Light 
Stemmer 

175 0.175 +/- 
0.088 

0.292 +/- 
0.244 

1.75 +/- 
0.88 

C1 180 0.181 +/- 

0.082 

0.297 +/- 

0.240 

1.80 +/- 

0.82 

C2 187 0.188 +/- 

0.090 

0.305 +/- 

0.239 

1.87 +/- 

0.90 

C3 192 0.192 +/- 
0.092 

0.312 +/- 
0.241 

1.92 +/- 
0.83 

C4 194 0.194 +/- 

0.093 

0.314 +/- 

0.241 

1.94 +/- 

0.93 

Table 4: Comparison between a light stemmer and 

different configurations for proposed stemmer 

 
As can be seen from table the best result was obtained 

using the proposed stemmer in conjunction with a stem 

list and a light stemmer. These results show an 

approximately 11% improvement in keyphrase extraction 

over the basic light stemmer. However, when using the t-

test to compare average precision values,  the difference 

between these results turned out to be statistically not 

significant with p =  0.1394.  Further experimentation 

with a larger dataset, and with other configurations for the 

proposed stemmer are planned. 

Conclusion and Future Work 

This paper has presented an approach for making use of 

text within a corpus or a document for verifying whether 

or not to strip a word from certain prefixes, suffixes or 

infixes. The approach can be utilized for rapidly building 

stem lists that can greatly improve  stemming accuracy. 

For the removal of infixes, a set of transformation rules 

were proposed. Evaluation of the proposed stemmer has 

shown that it does in fact achieve significantly higher 

accuracy when compared to a light stemmer. It has also 

shown, that improved stemming accuracy leads to 

significant improvement in the task of automatic 
annotation.   

 

Future work will mainly focus on means of making the 

stemmer even more accurate. Experimenting with 

modifying the stemmer and testing it on the task of 

information retrieval is also planned. In addition, some 

modifications to the stem building application so as make 

the stem list building process even faster, are intended. 

One of the important modifications is to offer alternative 

stems for each word in case a word matches with more 

than one pattern. 
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