
A FRAMEWORK FOR THE RAPID DEVELOPMENT OF LIST

BASED DOMAIN SPECIFIC ARABIC STEMMERS

Samhaa R. El-Beltagy

Faculty of Computers and Information,
Computer Science Department

Cairo University

5 Dr. Ahmed Zewail Street, 12613 Orman

Giza, Egypt

samhaa@computer.org

Ahmed Rafea

Computer Science Department

American University in Cairo

113 Kasr El Aini St.,

P.O. Box 2511,

Cairo, 11511, Egypt
rafea@aucegypt.edu

Abstract
Increased interest in the field of text mining, has also witnessed increased interest in the development of more accurate stemmers
required by various text mining applications. The goal of this work is to present an approach for stemming that falls somewhere in
between aggressive and light stemming. Not only does the presented work address the removal of suffixes and prefixes, it also
introduces a set of rules for removing infixes without the use of a morphological analyzer. The basic premise on which this work is
based, is that in any reasonably sized corpus, a word and its stem are likely to both appear in the corpus. By capitalizing on this
observation, the work aims to present a method for rapidly building stem lists from a small set of documents as well as make use of the
local context of a document when carrying out stemming. The evaluation of the work shows that it significantly improves stemming
accuracy. It also shows that by improving stemming accuracy, a task such as automatic annotation can also be significantly improved.

Introduction

Stemming is a very common operation in any information
retrieval system as well as almost all text mining
applications. The importance of building a good stemmer
lies in the fact that stemming can directly affect the
performance of any application of which it is a
component. Research has shown that stemming of Arabic
terms is a particularly difficult task because of its highly
inflected and derivational nature (Larkey et al., 2002).
Most work in this area either tries to reduce a given word
to its root (aggressive stemmers), or to identify a set of
prefixes and suffixes the removal of which can have a
positive impact on a given task such as information
retrieval (light or simple stemmers). The main advantage
of using a light stemmer is that it is very simple to apply
and though not very accurate in its stemming
performance, has proved effective for the task of
information retrieval. There are instances however when
light stemmers do not offer the needed accuracy. Tasks
such as semantic annotation, information extraction, and
segmentation using lexical chaining, all exemplify such
cases. In this report, accuracy in stemming is emphasized
through the proposal of an approach that extends the
notion of light stemming. Not only does the presented
work investigate the removal of suffixes and prefixes, it
also introduces a set of rules for removing infixes without
the use of a morphological analyzer. A stem in the context
of this work, is the singular, and whenever applicable,
masculine form of a word which does not necessarily map
to its root (a lema). The basic premise on which this work
is based, is that in any reasonably sized corpus, a word
and its stem are likely to both appear in the corpus. This is
a similar assumption to that adopted by (Xu and Croft,
1998) in their work on corpus based stemming. But unlike
their work, focus is placed on building stem lists through
the application of heuristic transformation rules on words

in order to reduce each to its singular form. If a word
resulting from applying a transformation rule on an input
word (a potential stem), is found to have appeared in the
corpus, then this word is considered as a stem for the
input word. It is important to note that this procedure is
not error free. For example, the same rule that would
reduce “دروس” to “درس ” can reduce “الغروب” to “غرب”
which is not its stem, but if both words are in the corpus
 By .”غروب“ will be assumed to be the stem for ”غرب“
maintaining a stem list containing words that should not
be further conflated (such as “غروب”), mistakes like this
can be avoided. Building such lists from scratch is very
expensive in terms of human effort and is not feasible in
general non domain specific applications. The presented
work however, introduces a methodology for rapidly
building lists like this through a semi-automatic interface
and shows how building such lists can pay off within a
domain specific application. and shows how building such
lists can pay off within a domain specific application. The
rest of this paper is organized as follows: section 2
presents an overview of the presented work, section 3
details transformation rules that can be applied to a word
in order to obtain its stem, section 4 describes the
procedure for rapidly building a stem list, section 5
describes experiments carried out to evaluate the
presented work and their results, and section 6 concludes
this work and provides future research directions.

Building and using the stemmer: an overview

In this work, building a stemmer is a two phase process.
In the first phase (training phase), a number of documents
from an input corpus can be selected for the stem list
building process. Through a user interface, a human can
then verify the resulting words and their stems making
any corrections (if needed) to ensure that words that
should not be conflated are stored in the stem list. In this
step also, the user can specify stems for irregular words

246

which are then stored in a dictionary. In the second phase
(operational phase), given any word or document,
stemming can be carried out by checking whether its
potential stem (obtained by applying appropriate rules)
exists in the stem list or not. Depending on the required
strictness of the stemmer, the original word whose
conflated form cannot be matched to an entry in the stem
list or the input text can be returned, or the corresponding
lightly stemmed version of the word may be returned. The
presented work aims to maintain the semantic of the word
when stemming it as much as possible, but without a
semantic analyzer this is not always possible. Whenever
there is ambiguity regarding whether or not to stem a
word because a proper stem will not be obtained without
understanding the meaning of the word, the shorter form
of the term is favoured. For example, the word “مدرسة”
may mean school in which case according to our
definition of a stem, it should not be further reduced. The
same term can also mean teacher the stem of which is
 and since this is the shorter form, it is the one that ”مدرس“
will be kept. This feature of course can be controlled
through the dictionary itself, so if the user of our stemmer
adds the term مدرسة” to the stem list, then every time this
term is encountered, it will not be further reduced. There
are other cases when the removal of the suffix “ة” should
be avoided. For example, the equivalent of the term
“minute” in Arabic is “دقيقة”,. Most light stemmers will
remove the “ة” at the end which will convert the word to
 which means “flour” (a totally different word). By ”دقيق“
maintaining a list of word stems that contain words such
as “دقيقة” we would know that this word does not need to
be further conflated. Like most light stemmers, prefixes
and suffixes commonly attached to verbs, are not included
in transformation rules presented by this work.

Stemming Steps

The presented stemmer works on three levels: prefix
removal, suffix removal and infix removal. Each of these
levels utilizes a different set of rules. In general, prefix
removal is first attempted, then suffix followed by infix
removal. Each of these steps is described in the following
sub-sections.

Prefix Removal

Prefix removal is the first step to be carried out in either
training or operational mode. In our work, we’ve divided
prefixes into two classes, compound prefixes which
consist of more than one letter and singular prefixes or
particles that are made up of just a single character.
Our compound prefix set covers the following patterns:

 	 ,ال,وال,بال,كال, فال, لل,وبال, ولل, وكال, وفال

Underlined prefixes, denote the set of prefixes not
removed by the light10 stemmer which is the baseline
stemmer in this work. For the removal of any prefix, the
length of the term to be stemmed minus the length of the
prefix has to be greater than or equal to two, otherwise no
prefix removal is carried out. A small experiment was
carried out to test the effect of removing prefixes in the
compound prefix set from any word that starts with them
if they satisfy the length requirements mentioned above
(except for prefix �). In this experiment 9 documents
making up a total of 19291 words, were used. From
these, a total 3851 unique words (excluding stop words,

single characters and numbers) were extracted. The
number of words on which prefix removal was applied
was 1708 (44% of input words). This resulted in the
generation of 1345 unique terms (a reduction of 21 %).
Words that started with a prefix, along with their altered
forms were examined to assess the accuracy of compound
prefix removal step. After identifying all cases from
which prefixes should not have been removed, but which
met the only requirement which is the length condition, it
was found that these cases are quite rare and that the
overall accuracy of this step is about 98.7%. For that
reason, is was decided not to impose any further rules on
the removal of a prefix in the compound set (i.e if a word
matches with a prefix in the compound prefix set, we
simply remove it).

Prefix � is considered as a special case and is handled a
bit differently than all the other prefixes in the compound
set. The reason for this, is that a word might have this
prefix to denote negation or simply because the causation
prefix “ل” happened to be attached to a word starting with
an “ا”. So validation similar to that carried out prefixes in
the singular prefix set (is detailed below) is first carried
out before removing this prefix.

The singular prefix set includes the following
conjunctions and prepositions:

ب, ل, ف, ك, و
Underlined particles, denote the set of prefixes not
removed by the light10 stemmer. Removing these
conjunctions and prepositions from a word without
validating the removal can often result in mistakes. This is
because this removal means removing the first letter of
any word that starts with any of this prefixes. So, for
example “وليد” (baby) would be reduced to “ليد” which has
no meaning and “فيل” would also be reduced to the
meaningless word “يل”. This is perhaps why the only
prefix from this set that a light stemmer removes is the “و”
which occurs often as a preposition attached to a word.
But as stated before, the likely hood of error in removal is
quite high. So, to validate the removal of these in training
mode, the prefix is first removed and then a check is made
to see if the resulting word has appeared at least once as
part of the input corpus. If the term is found, then it is
assumed that the prefix can be removed safely. In
stemming mode, the dictionary is first checked for the
resulting word then if not found, terms in the input
document are checked as well.

Suffix Removal

The next step after prefix removal, is suffix removal. Two

suffix sets have been identified as follows:

Suffix set 1 اته ,ات ,يات

Suffix set 2 ھا, ون, وا, ين, ان, ية, يه, ھم, ي, ه, ة

Table 1: Set of suffixed handled by the stemmer

Each of these sets is treated differently. Again, for the

removal of any suffix in either of the suffix sets, the

length of the resulting term must be at least 2 characters

in length. If this condition is not met, the input term is

returned as is. If an input term ends with any of the

suffixes in suffix set 1, the suffix is removed and

validation is carried out in a similar manner as described

247

before (in training mode this means checking that the

word resulting from the removal of the suffix has

appeared at least once in the input corpus. In stemming

operational mode, this means checking that the resulting

word either appeared in the dictionary or in the input

document). If a match is found, the resulting word is

returned. If no match is found, the “ة” character is added

to the resulting word and validation is carried out again. In

case a match is found, the resulting word is returned. If

no match is found suffixes in suffix set 2 are checked.

Handling of suffixes in the second suffix set is carried out

in a similar manner. Here, the original word is checked for

each of the suffixes in the suffix set in the denoted order.

If the word ends with the suffix, the suffix is removed and

the resulting word is validated. If found, it is returned.

Otherwise, a check is made to see whether the resulting

word ends with a “ت”. If it does, then the “ت” is replaced

with a “ة” and the resulting word is validated again. If

validated, it is returned but otherwise the original word is

checked for the next suffix until all are exhausted. If no

match is found in this procedure, the original word is
returned as is.

Infix removal

Infixes usually occur as a part of broken or irregular

plurals. While there is no straight forward way for

handling irregular plurals except through the use of

dictionaries, some of the commonly used broken plurals
exhibit well defined patterns that can be detected and

transformed. However, just because a word conforms to

any of the detected patterns, does not mean that a

transformation from the pattern to its possible stem is

valid which is why stemming of broken plurals is not

usually an easy task. [Gowder et al, 2004], show that

simply matching a word to its broken plural pattern,

results in very low precision. In their work, they

experimented with various ways for reducing broken

plurals to their singular forms. In all experiments, input

words are firstly lightly stemmed using a modified version

of the aggressive Khoja stemmer [Khoja & Garside,
1999]. In the first and least accurate experiment, all forms

that fit the pattern of a broken plural were detected and

analyzed to see whether or not words that fit these

patterns are in fact broken plurals. Having found that this

technique results in very low precision, an alternative

method which adds further restrictions based on the

author’s observations to existing patterns, was adopted.

Using this method precision increased significantly. In

the third variation, a machine learning approach was

adopted to automatically add restriction rules which

further improved the results, but the best results of all
were obtained using a dictionary based approach. Like

this work, focus in the work of [Gowder et al, 2004] was

on ways of correctly identifying patterns within the text

and developing heuristics in order to determine with

accuracy that a certain word fits a certain pattern. Their

work confirms the effectiveness of using stem

dictionaries, while this work illustrates how to rapidly

build these. Unlike their work however, even without the

use of a dictionary, this work aims to increase the

precision of a match, by checking that a transformation

from a word that matches a pattern to its potential stem

results in a word that has already appeared within the

context in which the word has originated. In case the input

to the stemmer, is a document, the context (or local

context) is all unique words that have appeared in that

document. When the input is a set of documents, then the

context is the aggregate of all words in all documents. As

the size of the local context increases, the better the

chance is for finding a match between a word and its

potential stem. This has the effect of increasing recall, but

also decreasing precision, as it is also likely that an
incorrect match will be found. Examples of patterns

detected and handled by the developed stemming

algorithm are shown in table 2.

PCode Examples Stems

P1 حدود, خطوط , سدود ,حد خط , سد

P2 درس بذور ,جذور ,سطور ,دروس , سطر , بذرة , جذر
P3 مرض,شجرة ,قول اقوال ,أمراض ,اشجار

P4 حرف, شھر أحرف, أشھر

P5 مدارس, مراكب مركب ,مدرسة
P6 وصايا, ھدايا وصية ,ھدية

P7 ة ماشي, عائل, جانب مواشي ,عوائل ,جوانب

P8 شجرة, وردة, دولة شجر, ورد, دول

P9 د�ئل, قصائد,حشائش دليل, قصيدة, حشيشة

P10 سائل, قائمة, ةفائد ,ةرائح سوائل ,قوائم, فوائد, روائح

P11 تراب, جھاز اتربة, اجھزه

P12 نجاح ,نوع ,حديث نجاحا ,نوعا ,حديثا

Table 2: Examples of patterns handled by the system

For each of the above patterns, a transformation rule is

defined to transform the broken plural pattern to its

singular form. Each time a pattern matches and a

transformation occurs, validation takes place as previously

described. If validation results in a match being found,

then the transformed pattern is assumed to be the stem of
the original word.

Procedure for rapidly building a stem list

In order to rapidly build a stem list which as stated before

can have the effect of boosting stemming accuracy, a set

of documents from the input corpus need to be selected as
a training set. The following steps are then carried out:

1. read all unique terms in a corpus of documents and

place in initially empty set allTerms. This step

includes removal of dialectics and normalization of

letters.

2. for each unique term ti

a. generate term ti' by removing prefixes as detailed

above from ti

b. generate term ti'' by removing suffixes as detailed
above from ti'

c. generate term ti''' by removing infixed as detailed

above from ti''

d. store ti and the result potential stem ti''' in a stem

table.

3. Display all term pairs (ti , potential_Stem_ ti)

stored in the dictionary to the user for validation.

(user interface is shown in fig 1). What is not shown,

is that in case the user indicates that a term is

248

incorrectly stemmed (s/he can then enter the correct

stem for that word).

4. For each validated entry, store ONLY the validated

stem in a text file. This now constitutes the stemming

stem list.

Figure1: Stemming Validation Interface

Evaluation

When evaluating the proposed approach, the main

concern was on assessing the stemming accuracy achieved

by the approach as well as comparing the improvement to
a baseline system in order to determine the significance

of the improvement. It was also important to establish that

improvement in accuracy can have a contribution to real

life applications. To address each of these evaluation

concerns, separate experiments were carried out. These

are detailed in the following sub-sections.

Determining improvements in accuracy

The experiment presented in this sub-section was carried
out in order to measure and compare the stemming
accuracy achieved by the proposed approach with that of
a baseline system The baseline stemmer with which
comparisons were made, is the light10 stemmer [Larkey et
al, 2002]. For experimentation purposes, the light
stemmer was developed in Java using the rules outlined
for the light10 stemmer in [Larkey et al, 2002]. The
domain chosen for experimentation was the Agricultural
domain. To build an Agricultural stem list, a total of 9
Agricultural extension documents were used as a training
set. The total number of words in these documents was
19291, but unique nonstop words amounted to only 3869
terms. From these, a stem list consisting of 1268 terms
was built as well as a dictionary for irregular terms
consisting of 68 terms. The whole process of reviewing
the stems and building the stem list took a little less than 2
hours. After building the stem list, stemming accuracy
was tested by applying the built stemmer on a set of 4
previously unseen, agricultural documents. Each

document was stemmed separately using the proposed
stemmer as well as using a light stemmer. The total
number of words in these document was: 9818 while the
average length of each document was 2455 ± 405 words.
In order to facilitate the manual review of the resulting
stems, only unique non stopword terms and their stems
were shown to the evaluator. Stems resulting from the
proposed approach were shown side by side to stems
resulting from the light stemmer. Entries such as verbs, ,
English words and misspelled terms were excluded from
the evaluation process. However, words that can be either
verbs or nouns depending on the context, were included
and were treated as nouns. A stem was considered
correct only if it followed our definition of a stem, which
is that it represents the singular, and whenever possible,
masculine form of a words. After manually reviewing all
resulting stems, accuracy for each method on each
document was calculated using the following formula:

accuracy(di)= all_correct_stems(di)/ total_stemmable(di)

where all_correct_stems(di) is the sum of all correctly
stemmed words in document di and total_stemmable(di) is
total number of valid words (that are not stopword, verbs,
etc) in document di. The results of this step are shown in
table 3.

 Proposed Stemmer Light Stemmer

Document 1 90.4% 50.9%

Document 2 89.4% 45.8%

Document 3 93.1% 55.3%

Document 4 90.5% 47.2%

Average

Accuracy
90.8% ± 1.59% 49.8±4.25%

Table 3: Examples of patterns handled by the system

From table 3 it can be seen that on average when using the
proposed stemmer in conjunction with a stem list there is
a 82.3% improvement in the accuracy of stemming.
Despite the fact that the used dataset is a very small one,
using a t-test to calculate the significance of the difference
between the results, showed that the difference in
accuracy between the proposed stemmer and a light one is
extremely statistically significant (with p < 0.0001).

Evaluating the stemmer with real life
applications

Have establishing that using the proposed stemmer, better
stemming accuracy can be achieved, the goal of the
second experiment was to investigate whether such an
improvement can in fact have an implication for real
applications. One of the motivations for developing the
proposed stemming approach was to use it as part of an
Arabic semantic annotation system as well as for an
ontology learning system. For both of these systems it was
very important to maximize matches between concepts in
an ontology and their corresponding forms, but not with
non matching terms as this would directly affect the
performance of the semantic annotation system, as well as
the automatic evaluation of the ontology learning system.
Using existing stemmers either resulted in missing certain
important matches as for example for the concepts

249

“ مرض, امراض ” and “ سماد, اسمدة ” as well as “ حشٮشة, حشائش ”
or conflated independent concepts such as “ري and رية” .
However, the former case was the more common one. So,
it was only natural to test the developed stemmer on a
simplified version of a system that carries out automatic
annotations. A description of the full system can be found
in [El-Beltagy et al , 2007]. Towards this end, an
experiment was setup to annotate section headings
extracted from agricultural documents using concepts
from an agricultural ontology. The used ontology
consisted of 322 concepts. The section headings were
automatically collected from 90 Agricultural extension
documents and amounted to 3192 headings. Each heading
was tagged with zero or more concepts in an ontology if a
match between phrases in that heading and an entry in the
ontology was found. Stemming of concepts and headings
is an essential pre-processing step in the matching
process. Using a light stemmer in this step resulted in the
generation of 3260 correct concept annotations, which
means that an average of 1.02 tags were generated per
heading with a standard deviation of 0.98 tag per heading.
Substituting the light stemmer with the proposed one and
using the dictionary generated in the first experiment, a
total of 3934 correct concept annotations were generated
(no incorrect tags were generated in either experiment).
So, on average 1.23 tags were generated per heading with
a standard deviation of 1.04 tags. Comparing these
results, it can be observed that using the proposed
approach resulted in an increase of 20.7% correct tags.
When the average number of tags were used to establish
the significance of the difference between the two results,
the difference was found to be extremely statistically
significant with p < 0.0001. Another experiment was
carried out to determine the effect of stemming on the task
of keyphrase extraction. In this experiment the KP-Miner
system was used for keyphrase extraction [El-Beltagy and
Rafea, 2009]. The used dataset consisted of one hundred
randomly collected articles from the Arabic Wikipedia
[Wikipedia, 2008]. Keywords for each article were
obtained from the keyword meta-tag associated with each,
but numeric entries (mostly denoting year numbers) were
ignored and so were Wikipedia related tags (such as
article seed for example) . The average number of words
per document in this dataset is 804 ± 934 and the average
number of keyphrases is 8.1 ± 3.2. The percentage of
author assigned keyphrases actually appearing within the
body of associated articles in this dataset is 81.8%. The
KP-Miner system allows the user to specify the number
of keypharses to extract for each input document. Setting
this number to 10, a comparison was held to see how
many keyphrases would be correctly extracted when using
a light stemmer as opposed to using the proposed
stemmer. Four different configurations for the proposed
stemmer were used:

C1: Proposed stemmer is used with no stem list
C2:Proposed stemmer is used with no stem list, but in
conjunction with a light stemmer (i.e stemming is
enforced). What that means is that after carrying out
transformations outlined before, a light stemmer is
invoked on the resulting word.
C3: Proposed stemmer is used with the stem list
obtained from agricultural documents
C4: Proposed stemmer is used with the stem with a
stem list in conjunction with a light stemmer.

The results of comparing these configurations with each

other and with a light stemmer are shown in table 4.

 Total #

of
matches

Average
Precision

Average
Recall

Avg # of
matches /
document

Light
Stemmer

175 0.175 +/-
0.088

0.292 +/-
0.244

1.75 +/-
0.88

C1 180 0.181 +/-

0.082

0.297 +/-

0.240

1.80 +/-

0.82

C2 187 0.188 +/-

0.090

0.305 +/-

0.239

1.87 +/-

0.90

C3 192 0.192 +/-
0.092

0.312 +/-
0.241

1.92 +/-
0.83

C4 194 0.194 +/-

0.093

0.314 +/-

0.241

1.94 +/-

0.93

Table 4: Comparison between a light stemmer and

different configurations for proposed stemmer

As can be seen from table the best result was obtained

using the proposed stemmer in conjunction with a stem

list and a light stemmer. These results show an

approximately 11% improvement in keyphrase extraction

over the basic light stemmer. However, when using the t-

test to compare average precision values, the difference

between these results turned out to be statistically not

significant with p = 0.1394. Further experimentation

with a larger dataset, and with other configurations for the

proposed stemmer are planned.

Conclusion and Future Work

This paper has presented an approach for making use of

text within a corpus or a document for verifying whether

or not to strip a word from certain prefixes, suffixes or

infixes. The approach can be utilized for rapidly building

stem lists that can greatly improve stemming accuracy.

For the removal of infixes, a set of transformation rules

were proposed. Evaluation of the proposed stemmer has

shown that it does in fact achieve significantly higher

accuracy when compared to a light stemmer. It has also

shown, that improved stemming accuracy leads to

significant improvement in the task of automatic
annotation.

Future work will mainly focus on means of making the

stemmer even more accurate. Experimenting with

modifying the stemmer and testing it on the task of

information retrieval is also planned. In addition, some

modifications to the stem building application so as make

the stem list building process even faster, are intended.

One of the important modifications is to offer alternative

stems for each word in case a word matches with more

than one pattern.

Acknowledgements

This work was supported by the Center of Excellence for
Data Mining and Computer modeling within the Egyptian
Ministry of Communication and Information (MCIT).

250

Bibliographical References

El-Beltagy, S. R., Hazmam, M., and Rafea, A. (2007).
Ontology Based Annotation of Web Document
Segments. In proceedings of the 22nd Annual ACM
Symposium on Applied Computing (pp. 1362-1367),
Seoul, Korea.

El-Beltagy, S. R., and Rafea, A. (2009). “KP-Miner: A
Keyphrase Extraction System for English and Arabic
Documents, Information Systems, 34(2009), 132 -144.

Goweder, A., Poesio, M. De Roeck, A. Reynolds, J.
(2004). Identifying broken plurals in unvowelised
Arabic text. In proceedings of EMNLP, Barcelona,
Spain.

Khoja, S. and Garside, R. (1999). Stemming Arabic text.
Computing Department, Lancaster University,
Lancaster, United Kingdom.

Larkey, L. S., Ballesteros, L., and Connell, M. E. (2002).
Improving Stemming for Arabic Information Retrieval:
Light Stemming and Co-occurrence Analysis. In
proceedings SIGIR’02. Tampere, Finland.

Larkey, L. S. and Connell, M. E. (2001). Arabic
information retrieval at UMass in TREC-10. In TREC
2001. Gaithersburg: NIST.

Wikipedia (2008). Wikipedia, the free encyclopedia.
http://ar.wikipedia.org/wiki/Main_Page

Xu, J., and Croft, W. B. (1998). Corpus, based stemming
using co-occurrence of word variants. ACM
Transactions on Information Systems , 16(1), 61- 81.

251

